物联网学报 ›› 2022, Vol. 6 ›› Issue (2): 1-9.doi: 10.11959/j.issn.2096-3750.2022.00270
• 智能无线定位与跟踪技术 • 下一篇
刘杨1,2, 李崔灿1,2, 彭木根1,2
修回日期:
2022-05-10
出版日期:
2022-06-30
发布日期:
2022-06-01
作者简介:
刘杨(1984− ),男,博士,北京邮电大学信息与通信工程学院副教授,主要研究方向为感传算一体化、低功耗水下物联网等基金资助:
Yang LIU1,2, Cuican LI1,2, Mugen PENG1,2
Revised:
2022-05-10
Online:
2022-06-30
Published:
2022-06-01
Supported by:
摘要:
随着水下传感设备的激增以及对能源节约的追求,低功耗水下物联网的概念得以提出。受基于射频的反向散射网络启发,低功耗水下物联网利用水声反向散射技术实现水下传感器节点低功耗、低成本通信,在如水下长期探测等水下领域有着广泛的应用前景。首先,介绍了低功耗水下物联网的原理与架构;然后,提出并分析了该架构的关键技术,如感知、通信、组网、资源分配、安全等;最后,探讨了低功耗水下物联网的未来研究方向。
中图分类号:
刘杨, 李崔灿, 彭木根. 低功耗水下物联网:愿景与关键技术[J]. 物联网学报, 2022, 6(2): 1-9.
Yang LIU, Cuican LI, Mugen PENG. Low-power internet of underwater things: vision and key technologies[J]. Chinese Journal on Internet of Things, 2022, 6(2): 1-9.
[1] | IDC. IDC:2021下半年全球物联网支出指南发布,中国物联网市场规模有望在2025年超3 000亿美元[EB]. 2021. |
IDC. IDC:Global IoT spending guide released for the second half of 2021,China IoT market size expected to exceed $300 billion by 2025[EB]. 2021. | |
[2] | ZENG Z Q , FU S , ZHANG H H ,et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017,19(1): 204-238. |
[3] | JAHANBAKHT M , XIANG W , HANZO L ,et al. Internet of underwater things and big marine data analytics—A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021,23(2): 904-956. |
[4] | LIOU E C , KAO C C , CHANG C H ,et al. Internet of underwater things:challenges and routing protocols[C]// Proceedings of 2018 IEEE International Conference on Applied System Invention. Piscataway:IEEE Press, 2018: 1171-1174. |
[5] | LLORET J . Underwater sensor nodes and networks[J]. Sensors (Basel,Switzerland), 2013,13(9): 11782-11796. |
[6] | VAN HUYNH N , HOANG D T , LU X ,et al. Ambient backscatter communications:a contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2889-2922. |
[7] | WANG H , WANG S L , ZHANG E Y ,et al. An energy balanced and lifetime extended routing protocol for underwater sensor networks[J]. Sensors (Basel,Switzerland), 2018,18(5): 1596. |
[8] | LIU L B , ZHOU S L , CUI J H . Prospects and problems of wireless communication for underwater sensor networks[J]. Wireless Communications and Mobile Computing, 2008,8(8): 977-994. |
[9] | JANG J , ADIB F . Underwater backscatter networking[C]// SIGCOMM '19:Proceedings of the ACM Special Interest Group on Data Communication. New York:ACM Press, 2019: 187-199. |
[10] | DING H , HAN J S , LIU A X ,et al. Counting human objects using backscattered radio frequency signals[J]. IEEE Transactions on Mobile Computing, 2019,18(5): 1054-1067. |
[11] | ZHAO C , LI Z J , DING H ,et al. A fingertip profiled RF identifier[J]. IEEE Transactions on Mobile Computing, 2022,21(2): 392-407. |
[12] | DING H , QIAN C , HAN J S ,et al. Close-proximity detection for hand approaching using backscatter communication[J]. IEEE Transactions on Mobile Computing, 2019,18(10): 2285-2297. |
[13] | YANG L , LI Y , LIN Q Z ,et al. Making sense of mechanical vibration period with sub-millisecond accuracy using backscatter signals[C]// Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking. New York:ACM Press, 2016: 16-28. |
[14] | LI P , AN Z L , YANG L ,et al. RFID harmonic for vibration sensing[J]. IEEE Transactions on Mobile Computing, 2021,20(4): 1614-1626. |
[15] | CHRISTENSEN-JEFFRIES K , HARPUT S , BROWN J ,et al. Microbubble axial localization errors in ultrasound super-resolution imaging[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 2017,64(11): 1644-1654. |
[16] | WANG K D , GU J F , REN F C ,et al. A multitarget active backscattering 2-D positioning system with super resolution time series post-processing technique[J]. IEEE Transactions on Microwave Theory and Techniques, 2017,65(5): 1751-1766. |
[17] | ROSTAMI M , GUMMESON J , KIAGHADI A ,et al. Polymorphic radios:a new design paradigm for ultra-low power communication[C]// Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. New York:ACM, 2018: 446-460. |
[18] | LIU T C , LIU Y H , YANG L ,et al. BackPos:high accuracy backscatter positioning system[J]. IEEE Transactions on Mobile Computing, 2016,15(3): 586-598. |
[19] | HE C , LUAN H X , LI X Y ,et al. A simple,high-performance space–time code for MIMO backscatter communications[J]. IEEE Internet of Things Journal, 2020,7(4): 3586-3591. |
[20] | LUAN H X , XIE X , HAN L Y ,et al. A better than alamouti OSTBC for MIMO backscatter communications[J]. IEEE Transactions on Wireless Communications, 2022,21(2): 1117-1131. |
[21] | SONG G C , WANG W , YANG H ,et al. Exploiting channel polarization for reliable wide-area backscatter networks[J]. IEEE Transactions on Mobile Computing, 5549,PP(99): 1. |
[22] | GOUDELI E , PSOMAS C , KRIKIDIS I . Spatial-modulation-based techniques for backscatter communication systems[J]. IEEE Internet of Things Journal, 2020,7(10): 10623-10634. |
[23] | ZHAO J , GONG W , LIU J C . Spatial stream backscatter using commodity WiFi[C]// Proceedings of the 16th Annual International Conference on Mobile Systems,Applications,and Services. New York:ACM, 2018: 191-203. |
[24] | GUO X Z , SHANGGUAN L F , HE Y ,et al. Aloba:rethinking ON-OFF keying modulation for ambient LoRa backscatter[C]// Proceedings of SenSys'20:Proceedings of the 18th Conference on Embedded Networked Sensor Systems. 2020: 192-204. |
[25] | GONG W , YUAN L Z , WANG Q W ,et al. Multiprotocol backscatter for personal IoT sensors[C]// Proceedings of CoNEXT'20:Proceedings of the 16th International Conference on emerging Networking EXperiments and Technologies. 2020: 261-273. |
[26] | YANG G , ZHANG Q Q , LIANG Y C . Cooperative ambient backscatter communications for green Internet-of-things[J]. IEEE Internet of Things Journal, 2018,5(2): 1116-1130. |
[27] | CHOI J . Matched-filter-based backscatter communication for IoT devices over ambient OFDM carrier[J]. IEEE Internet of Things Journal, 2019,6(6): 10229-10239. |
[28] | KIM T , LEE W . Channel independent Wi-Fi backscatter networks[C]// Proceedings of IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2019: 262-270. |
[29] | HUANG Q Y , SONG G C , WANG W ,et al. FreeScatter:enabling concurrent backscatter communication using antenna arrays[J]. IEEE Internet of Things Journal, 2020,7(8): 7310-7318. |
[30] | GONGW , LIU H X , LIU K B , et al . Exploiting channel diversity for rate adaptation in backscatter communication networks[C]// Proceedings of IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications. Piscataway:IEEE Press, 2016: 1-9. |
[31] | GONG W , CHEN S , LIU J C . Towards higher throughput rate adaptation for backscatter networks[C]// Proceedings of 2017 IEEE 25th International Conference on Network Protocols. Piscataway:IEEE Press, 2017: 1-10. |
[32] | CHEN S , GONG W , ZHAO J ,et al. High-throughput and robust rate adaptation for backscatter networks[J]. IEEE/ACM Transactions on Networking, 2020,28(5): 2120-2131. |
[33] | HAN S Y , LIANG Y C , SUN G L . The design and optimization of random code assisted multi-BD symbiotic radio system[J]. IEEE Transactions on Wireless Communications, 2021,20(8): 5159-5170. |
[34] | MA Z J , FENG L , XU F X . Design and analysis of a distributed and demand-based backscatter MAC protocol for Internet of Things networks[J]. IEEE Internet of Things Journal, 2019,6(1): 1246-1256. |
[35] | LIU W C , HUANG K B , ZHOU X Y ,et al. Full-duplex backscatter interference networks based on time-hopping spread spectrum[J]. IEEE Transactions on Wireless Communications, 2017,16(7): 4361-4377. |
[36] | PENG Y , SHANGGUAN L , HU Y ,et al. PLoRa:a passive long-range data network from ambient LoRa transmissions[C]// Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. New York:ACM Press, 2018: 147-160. |
[37] | CHEN W Y , DING H Y , WANG S L ,et al. Backscatter cooperation in NOMA communications systems[J]. IEEE Transactions on Wireless Communications, 2021,20(6): 3458-3474. |
[38] | KHAN W U , JAVED M A , NGUYEN T N ,et al. Energy-efficient resource allocation for 6G backscatter-enabled NOMAIoV networks[J]. IEEE Transactions on Intelligent Transportation Systems,0942 PP(99): 1-11. |
[39] | CHU Z , HAO W M , XIAO P ,et al. Resource allocations for symbiotic radio with finite block length backscatter link[J]. IEEE Internet of Things Journal, 2020,7(9): 8192-8207. |
[40] | MISHRA D , LARSSON E G . Optimal channel estimation for reciprocity-based backscattering with a full-duplex MIMO reader[J]. IEEE Transactions on Signal Processing, 2019,67(6): 1662-1677. |
[41] | LYU B , YANGZ , GUO H Y ,et al. Relay cooperation enhanced backscatter communication for Internet-of-things[J]. IEEE Internet of Things Journal, 2019,6(2): 2860-2871. |
[42] | XU J , LI J C , GONG S M ,et al. Passive relaying game for wireless powered internet of things in backscatter-aided hybrid radio networks[J]. IEEE Internet of Things Journal, 2019,6(5): 8933-8944. |
[43] | YANG C L , WANG X D , CHIN K W . On max–min throughput in backscatter-assisted wirelessly powered IoT[J]. IEEE Internet of Things Journal, 2020,7(1): 137-147. |
[44] | HASSAN M Z , HOSSAIN M J , CHENG J L ,et al. Statistical-QoS guarantee for IoT network driven by laser-powered UAV relay and RF backscatter communications[J]. IEEE Transactions on Green Communications and Networking, 2021,5(1): 406-425. |
[45] | YANG G , YUAN DD , LIANG Y C . Optimal resource allocation in full-duplex ambient backscatter communication networks for green IoT[J]. 2018 IEEE Global Communications Conference (GLOBECOM), 2018: 1-6. |
[46] | LONG Y S , HUANG G F , TANG D ,et al. Achieving high throughput in wireless networks with hybrid backscatter and wireless-powered communications[J]. IEEE Internet of Things Journal, 2021,8(13): 10896-10910. |
[47] | YANG Q , WANG H M , ZHANG Y ,et al. Physical layer security in MIMO backscatter wireless systems[J]. IEEE Transactions on Wireless Communications, 2016,15(11): 7547-7560. |
[48] | LI X W , ZHAO M L , ZENG M ,et al. Hardware impaired ambient backscatter NOMA systems:reliability and security[J]. IEEE Transactions on Communications, 2021,69(4): 2723-2736. |
[49] | WANG P , JIAO L , ZENG K ,et al. Physical layer key generation between backscatter devices over ambient RF signals[C]// Proceedings of IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2021: 1-10. |
[50] | ZHANG Y , GAO F F , FAN L S ,et al. Backscatter communications over correlated nakagami-$m$ fading channels[J]. IEEE Transactions on Communications, 2019,67(2): 1693-1704. |
[51] | YANG Q , WANG H M , YIN Q Y ,et al. Exploiting randomized continuous wave in secure backscatter communications[J]. IEEE Internet of Things Journal, 2020,7(4): 3389-3403. |
[52] | GHAFFARIVARDAVAGH R , AFZAL S S , RODRIGUEZ O ,et al. Ultra-wideband underwater backscatter via piezoelectric metamaterials[C]// SIGCOMM '20:Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications,technologies,architectures,and protocols for computer communication. New York:ACM Press, 2020: 722-734. |
[53] | LI D , ZHANG H , FAN L S . Adaptive mode selection for backscatter-assisted communication systems with opportunistic SIC[J]. IEEE Transactions on Vehicular Technology, 2020,69(2): 2327-2331. |
[54] | GONG W , LIU H X , LIU J C ,et al. Channel-aware rate adaptation for backscatter networks[J]. IEEE/ACM Transactions on Networking, 2018,26(2): 751-764. |
[1] | 江昊, 陈宏铭, 曹以龙, 崔昊杨. 基于MIMO的大容量LPWAN技术TurMassTM与LoRa对比[J]. 物联网学报, 2021, 5(4): 54-61. |
[2] | 茅敏敏, 居家奇, 欧阳玉玲, 金妍. 基于NB-IoT技术的环境温湿度监测系统的研制[J]. 物联网学报, 2021, 5(4): 99-106. |
[3] | 徐勇军, 杨浩克, 叶迎晖, 陈前斌, 卢光跃. 反向散射通信网络资源分配综述[J]. 物联网学报, 2021, 5(3): 56-69. |
[4] | 顾超杰, 谭睿. 赋能新一代物联网的LoRaWAN技术[J]. 物联网学报, 2021, 5(2): 18-25. |
[5] | 郭颖,王公仆,李宗辉,何睿斯,钟章队. 基于无源反向散射技术的智能标签:应用与挑战[J]. 物联网学报, 2020, 4(3): 20-29. |
[6] | 伍明江,类先富,李里,唐小虎. 面向6G物联网的主被动互惠传输关键技术[J]. 物联网学报, 2020, 4(1): 45-51. |
[7] | 田飞燕,陈晓明,钟财军,张朝阳. 6G蜂窝物联网的大规模接入技术[J]. 物联网学报, 2020, 4(1): 92-103. |
[8] | 陈瑜晨,曹渊,张来鹏,丁良辉,杨峰. 低功耗物联网RTRS算法[J]. 物联网学报, 2019, 3(4): 56-62. |
[9] | 田乐,胡宇翔,韩伟涛. 面向物联网的Wi-Fi HaLow技术研究[J]. 物联网学报, 2019, 3(3): 50-61. |
[10] | 陶琴,钟财军,张朝阳. 面向无源物联网的环境反向散射通信技术[J]. 物联网学报, 2019, 3(2): 28-34. |
[11] | 朱剑驰,杨蓓,陈鹏,佘小明,毕奇. 物联网无线接入技术研究[J]. 物联网学报, 2018, 2(2): 73-84. |
[12] | 解运洲. NB-IoT标准体系演进与物联网行业发展[J]. 物联网学报, 2018, 2(1): 76-87. |
[13] | 郑志彬,陈德,吴昊. 新兴窄带物联网技术NB-IoT[J]. 物联网学报, 2017, 1(3): 24-32. |
[14] | 王公仆, 熊 轲, 刘 铭, 高飞飞, 钟章队. 反向散射通信技术与物联网[J]. 物联网学报, 2017, 1(1): 67-75. |
[15] | 张云勇, 贾雪琴. 物联网业务发展挑战及 NB-IoT 运营策略[J]. 物联网学报, 2017, 1(1): 76-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|