物联网学报 ›› 2022, Vol. 6 ›› Issue (3): 37-46.doi: 10.11959/j.issn.2096-3750.2022.00277
黄诺1,2, 刘伟杰1,2, 龚晨1,2
修回日期:
2022-06-17
出版日期:
2022-08-05
发布日期:
2022-08-08
作者简介:
黄诺(1991- ),男,博士,中国科学技术大学特任副研究员,主要研究方向为无线光电通信中的资源分配和传输方案设计等基金资助:
Nuo HUANG1,2, Weijie LIU1,2, Chen GONG1,2
Revised:
2022-06-17
Online:
2022-08-05
Published:
2022-08-08
Supported by:
摘要:
相比于传统无线射频通信,拍赫兹通信(PetaCom, petahertz communication)具有高速率、低时延和高确定性等显著优势,在工业物联网(IIoT, industrial internet of things)中可以发挥更大的应用潜力。然而,在实际场景中,面向IIoT的PetaCom仍存在链路不稳定和信号干扰等问题。从IIoT和PetaCom的基本概念出发,对面向IIoT的PetaCom进行了全面概述和总结,包括信道建模、物理层技术、用户组网、优势与挑战等方面,旨在为今后面向IIoT的PetaCom相关研究提供参考。
中图分类号:
黄诺, 刘伟杰, 龚晨. 面向工业物联网的拍赫兹通信[J]. 物联网学报, 2022, 6(3): 37-46.
Nuo HUANG, Weijie LIU, Chen GONG. Industrial IoT oriented petahertz communication[J]. Chinese Journal on Internet of Things, 2022, 6(3): 37-46.
[1] | DAXU L , HE W , LI S C . Internet of things in industries,a survey[J]. IEEE Transactions on Industrial Informatics, 2014,10(4): 2233-2243. |
[2] | MAHMOOD Z . The internet of things in the industrial sector[M]. Cham,Springer International Publishing, 2019. |
[3] | 张克, 刘留, 袁泽 ,等. 工业物联网无线信道与噪声特性[J]. 电信科学, 2018,34(8): 87-97. |
ZHANG K , LIU L , YUAN Z ,et al. Wireless channel and noise characteristics in industrial internet of things[J]. Telecommunications Science, 2018,34(8): 87-97. | |
[4] | YANG H , ALPHONES A , ZHONG W D ,et al. Learning-based energy-effcient resource management by heterogeneous RF/VLC for ultra-reliable low-latency industrial IoT networks[J]. IEEE Transactions on Industrial Informatics, 2019,16(8): 5565-5576. |
[5] | ZHANG Y H , CHEN B D , LU X N . Intelligent monitoring system on refrigerator trucks based on the internet of things[C]// Wireless Communications and Applications, 2012: 201-206. |
[6] | XU Z Y , LIU W J , WANG Z C ,et al. Petahertz communication,Harmonizing optical spectra for wireless communications[J]. Digital Communications and Networks, 2021,7(4): 605-614. |
[7] | 徐正元, 王昭诚 . 6G扬帆起航:拍赫兹通信与健康泛在网络助推6G新应用[EB]. 2019. |
XU Z Y , WANG Z C . 6G set sail,Petahertz communication and health ubiquitous network to boost 6G's new application[EB]. 2019. | |
[8] | GHASSEMLOOY Z , ARNON S , UYSAL M ,et al. Emerging optical wireless communications-advances and challenges[J]. IEEE Journal on Selected Areas in Communications, 2015,33(9): 1738-1749. |
[9] | IEEE. IEEE standard for local and metropolitan area networks-part 15.7,short-range optical wireless communications,Std 802.15.7-2018[S]. 2018. |
[10] | XU Z Y , SADLER B M . Ultraviolet communications,potential and state-of-the-art[J]. IEEE Communications Magazine, 2008,46(5): 67-73. |
[11] | HANZO L , HAAS H , IMRE S ,et al. Wireless myths,realities,and futures,from 3G/4G to optical and quantum wireless[J]. Proceedings of the IEEE,,100(Special Centennial Issue), 2012100(Special Centennial Issue),1853-1888. |
[12] | HAAS H , YIN L , WANG Y L ,et al. What is LiFi?[J]. Journal of Lightwave Technology, 2016,34(6): 1533-1544. |
[13] | UYSAL M , GHASSEMLOOY Z , BEKKALI A ,et al. Visible light communication for vehicular networking,performance study of a V2V system using a measured headlamp beam pattern model[J]. IEEE Vehicular Technology Magazine, 2015,10(4): 45-53. |
[14] | CUI K Y , CHEN G , XU Z Y ,et al. Traffic light to vehicle visible light communication channel characterization[J]. Applied Optics, 2012,51(27): 6594-6605. |
[15] | KAHN J M , BARRY J R . Wireless infrared communications[J]. Proceedings of the IEEE, 1997,85(2): 265-298. |
[16] | KHALIGHI M A , UYSAL M . Survey on free space optical communication,a communication theory perspective[J]. IEEE Communications Surveys & Tutorials, 2014,16(4): 2231-2258. |
[17] | KAUSHAL H , KADDOUM G . Optical communication in space:challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017,19(1): 57-96. |
[18] | GONG C , XU Z Y . Temporal spectrum sensing for optical wireless scattering communications[J]. Journal of Lightwave Technology, 2015,33(18): 3890-3900. |
[19] | CALVANESE STRINATI E , BARBAROSSA S , GONZALEZ-JIMENEZ J L , ,et al. 6G,the next frontier,from holographic messaging to artificial intelligence using subterahertz and visible light communication[J]. IEEE Vehicular Technology Magazine, 2019,14(3): 42-50. |
[20] | TSIFTSIS T A , DING G R , ZOU Y L ,et al. Guest editorial spectrum sharing and aggregation for future wireless networks,part I[J]. IEEE Journal on Selected Areas in Communications, 2016,34(10): 2533-2536. |
[21] | LUO O.P . IEEE 802.11bb LC usage model document[EB]. 2018. |
[22] | JUNGNICKEL V , HINRICHS M , BOBER K L ,et al. Enhance lighting for the internet of things[C]// Proceedings of 2019 Global LIFI Congress (GLC). Piscataway,IEEE Press, 2019: 1-6. |
[23] | YANG J , LI D Z , JIANG X F ,et al. Enhancing the resilience of low earth orbit remote sensing satellite networks[J]. IEEE Network, 2020,34(4): 304-311. |
[24] | MENAKA D , GAUNI S , MANIMEGALAI C T ,et al. Vision of IoUT:advances and future trends in optical wireless communication[J]. Journal of Optics, 2021,50(3): 439-452. |
[25] | JAHANBAKHT M , XIANG W , HANZO L ,et al. Internet of underwater things and big marine data analytics—A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021,23(2): 904-956. |
[26] | ZOU D F , GONG C , WANG K ,et al. Characterization on practical photon counting receiver in optical scattering communication[J]. IEEE Transactions on Communications, 2019,67(3): 2203-2217. |
[27] | JIANG Z M , GONG C , XU Z Y . Achievable rates and signal detection for photon-level photomultiplier receiver based on statistical non-linear model[J]. IEEE Transactions on Wireless Communications, 2019,18(12): 6015-6029. |
[28] | LIU W J , XU Z Y . Some practical constraints and solutions for optical camera communication[J]. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences, 2020,378(2169): 20190191. |
[29] | HUANG W , TIAN P , XU Z Y . Design and implementation of a real-time CIM-MIMO optical camera communication system[J]. Optics Express, 2016,24(21): 24567-24579. |
[30] | YAMAZATO T , TAKAI I , OKADA H ,et al. Image-sensor-based visible light communication for automotive applications[J]. IEEE Communications Magazine, 2014,52(7): 88-97. |
[31] | WANG C Y , LIANG P , XIE R J ,et al. Highly efficient lead-free (Bi,Ce)-codopedCs2Ag0.4Na0.6InCl6double perovskites for white light-emitting diodes[J]. Chemistry of Materials, 2020,32(18): 7814-7821. |
[32] | ZHANG Z Q , XIAO Y , MA Z ,et al. 6G wireless networks,vision,requirements,architecture,and key technologies[J]. IEEE Vehicular Technology Magazine, 2019,14(3): 28-41. |
[33] | HAMZA A , TRIPP T . Optical wireless communication for the internet of things,advances,challenges,and opportunities[EB]. 2020. |
[34] | IBHAZE A , ORUKPE P , EDEKO F . Li-Fi prospect in internet of things network[C]// Advances in Information and Communication:Proceedings of the 2020 Future of Information and Communication Conference (FICC). Springer Nature,2020, 1129(1):272. |
[35] | 顾瑞楠, WONG Kam Sing, 严明 . 金、银、铜等典型高反射率材料的激光增材制造[J]. 中国科学,物理学力学天文学, 2020,50(3): 44-57. |
GU R N , SING W , YAN M . Laser additive manufacturing of typical highly reflective materials—gold,silver and copper[J]. Scientia Sinica (Physica,Mechanica&Astronomica), 2020,50(3): 44-57. | |
[36] | BERENGUER P W , HELLWIG P , SCHULZ D ,et al. Real-time optical wireless mobile communication with high physical layer reliability[J]. Journal of Lightwave Technology, 2019,37(6): 1638-1646. |
[37] | WILKE BERENGUER P , SCHULZ D , HILT J ,et al. Optical wireless MIMO experiments in an industrial environment[J]. IEEE Journal on Selected Areas in Communications, 2018,36(1): 185-193. |
[38] | PARASKEVOPOULOS A , SCHULZ D , BERENGUER P W ,et al. [C]// Design of a secure software-defined access network for flexible Industry 4.0 manufacturing - The SESAM-project concept. Piscataway,IEEE Press, 2019: 1-5. |
[39] | UYSAL M , MIRAMIRKHANI F , NARMANLIOGLU O ,et al. IEEE 802.15.7r1 reference channel models for visible light communications[J]. IEEE Communications Magazine, 2017,55(1): 212-217. |
[40] | UYSAL M , MIRAMIRKHANI F , BAYKAS T ,et al. IEEE 802.11 bb reference channel models for indoor environments[R]. 2018. |
[41] | WANG J , AL-KINANI A , ZHANG W S ,et al. A general channel model for visible light communications in underground mines[J]. China Communications, 2018,15(9): 95-105. |
[42] | MANSOUR I M . Effective visible light communication system for underground mining industry[J]. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 2020,8(2): 331-339. |
[43] | DONMEZ B , MITRA R , MIRAMIRKHANI F . Channel modeling and characterization for VLC-based medical body sensor networks,trends and challenges[J]. IEEE Access, 9: 153401-153419. |
[44] | YUAN M , SHA X S , LIANG X ,et al. Coding performance for signal dependent channels in visible light communication system[C]// Pro ceedings of 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Piscataway,IEEE Press, 2015: 1037-1041. |
[45] | WANG H , KIM S . Dimming control systems with polar codes in visible light communication[J]. IEEE Photonics Technology Letters, 2017,29(19): 1651-1654. |
[46] | WANG Y , WU N , XU Z Y . Study of raptor codes for indoor mobile VLC channels[C]// Proceedings of 2018 IEEE Globecom Workshops. Piscataway,IEEE Press, 2018: 1-6. |
[47] | POLYANSKIY Y , POOR H V , VERDU S . Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010,56(5): 2307-2359. |
[48] | LIVA G , STEINER F . Channel codes for short blocks,A survey[C]// Proceeding of 11th International ITG Conference on Systems,Communications and Coding. 2017. |
[49] | CHEN H , ABBAS R , CHENG P ,et al. Ultra-reliable low latency cellular networks,use cases,challenges and approaches[J]. IEEE Communications Magazine, 2018,56(12): 119-125. |
[50] | ZHAO X Y , CHEN W , POOR H V . Achieving extremely low-latency in industrial internet of things,joint finite blocklength coding,resource block matching,and performance analysis[J]. IEEE Transactions on Communications, 2021,69(10): 6529-6544. |
[51] | PARK S B , JUNG D K , SHIN H S ,et al. Information broadcasting system based on visible light signboard[J]. Proceedings of Wireless Optical Communication, 2007,30: 311-313. |
[52] | SUGIYAMA H , HARUYAMA S , NAKAGAWA M . Brightness control methods for illumination and visible-light communication systems[C]// Proceedings of 2007 Third International Conference on Wireless and Mobile Communications (ICWMC'07). Piscataway:IEEE Press, 2007,78. |
[53] | SHIU D S , KAHN J M . Differential pulse-position modulation for power-efficient optical communication[J]. IEEE Transactions on Communications, 1999,47(8): 1201-1210. |
[54] | ZHOU J , ZHANG W Y . A comparative study of unipolar OFDM schemes in Gaussian optical intensity channel[J]. IEEE Transactions on Communications, 2018,66(4): 1549-1564. |
[55] | HONG Y Q , HAN S K . Polarization-dependent SOA-based PolSK modulation for turbulence-robust FSO communication[J]. Optics Express, 2021,29(10): 15587-15594. |
[56] | LIAN J , BRANDT-PEARCE M , . Joint optimal waveform design for multiuser VLC systems over ISI channel[C]// Proceedings of 2017 IEEE International Conference on Communications. Piscataway,IEEE Press, 2017: 1-6. |
[1] | 孙君, 赵尚维康. 工业物联网中基于Sarsa算法的节能计算卸载方案[J]. 物联网学报, 2022, 6(3): 82-90. |
[2] | 罗梓珲, 江呈羚, 刘亮, 郑霄龙, 马华东. 基于深度强化学习的智能车间调度方法研究[J]. 物联网学报, 2022, 6(1): 53-64. |
[3] | 周鹏,徐金城,杨博. 工业物联网中基于边缘计算的跨域计算资源分配与任务卸载[J]. 物联网学报, 2020, 4(2): 96-104. |
[4] | 李一倩,刘留,李慧婷,张琨,袁泽. 工业物联网无线信道特性研究[J]. 物联网学报, 2019, 3(4): 34-47. |
[5] | 龚淑蕾,李堃,童恩,郭洪德,周毅,王晔,丁飞. 基于蜂窝工业物联网的智能工厂解决方案[J]. 物联网学报, 2019, 3(2): 108-114. |
[6] | 吴超,王成群,朱升宏,徐伟强,贾宇波. 工业物联网中的缓冲内存管理设计与实现[J]. 物联网学报, 2019, 3(1): 60-64. |
[7] | 倪光南. 工业物联网安全与核心技术国产化[J]. 物联网学报, 2018, 2(2): 1-7. |
[8] | 朱剑驰,杨蓓,陈鹏,佘小明,毕奇. 物联网无线接入技术研究[J]. 物联网学报, 2018, 2(2): 73-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|