[1] |
郝淳敏 . 乳腺癌二级预防筛查模式的研究[J]. 中华健康管理学杂志, 2012,6(2): 131-132.
|
|
HAO C M . Research on secondary preventive screening model for breast cancer[J]. Chinese Journal of Health Management, 2012,6(2): 131-132.
|
[2] |
毕晓峰, 徐志坚 . 乳腺癌筛查技术研究现状与展望[J]. 中华健康管理学杂志, 2016(4): 321-325.
|
|
BI X F , XU Z J . Technology of breast cancer screening: current situation and prospect[J]. Chinese Journal of Health Management, 2016(4): 321-325.
|
[3] |
王本忠, 付君 . 乳腺触诊成像影像诊断学[M]. 北京: 科学出版社, 2016.
|
|
WANG B Z , FU J . Diagnostics of breast palpation imaging[M]. Beijing: China Science Publishing House, 2016.
|
[4] |
宋颖, 李静, 张仁知 , 等. 乳腺可视化触诊成像系统鉴别诊断乳腺良恶性病变: 与临床触诊、X线及超声对照[J]. 中国医学影像技术, 2014,30(4): 527-530.
|
|
SONG Y , LI J , ZHANG R Z , et al. Palpation imaging system in differentiating benign and malignant breast lesions:comparedwith physical examination, mammographyand ultrasonograph[J]. Chinese Journal of Medical Imaging Technology, 2014,30(4): 527-530.
|
[5] |
盖小荣, 王振捷, 王健 , 等. 触诊成像系统在乳腺疾病健康筛查中的应用研究[J]. 中华健康管理学杂志, 2013,7(6): 398-401.
|
|
GAI X R , WANG Z J , WANG J , et al. The application of palpation imaging in the screening of breast disease[J]. Chinese Journal of Health Management, 2013,7(6): 398-401.
|
[6] |
于志勇, 左文述, 刘岩松 , 等. 乳腺触觉成像诊断系统的临床应用评估[J]. 中华肿瘤防治杂志, 2011(1): 50-53.
|
|
YU Z Y , ZUO W S , LIU Y S , et al. Clinical evaluation of breast palpation imaging system[J]. Chinese Journal of Cancer Prevention and Treatment, 2011(1): 50-53.
|
[7] |
方礼妮, 郑春兰 . 女性乳腺癌患者主要照顾者抑郁状况及影响因素研究[J]. 中华健康管理学杂志, 2015,9(3): 209-211.
|
|
FANG L N , ZHENG C L . Study on depression status and influencing factors of main caregivers of female breast cancer patients[J]. Chinese Journal of Health Management, 2015,9(3): 209-211.
|
[8] |
王忠民, 曹洪江, 范琳 . 一种基于卷积神经网络深度学习的人体行为识别方法[J]. 计算机科学, 2016,43(11A): 56-58,87.
|
|
WANG Z M , CAO H J , FAN L , et al. Method on human activity recognition based on convolutional neural networks[J]. Computer Science, 2016,43(11A): 56-58,87.
|
[9] |
沈花玉, 王兆霞, 高成耀 . BP神经网络隐含层单元数的确定[J]. 天津理工大学学报, 2008,24(5): 13-15.
|
|
SHEN H Y , WANG Z X , GAO C Y , et al. Determining the number of BP neural network hidden layer units[J]. Journal of Tianjin University of Technology, 2008,24(5): 13-15.
|
[10] |
郑伟, 马楠 . 一种改进的决策树后剪枝算法[J]. 计算机与数字工程, 2015(6): 960-966,971.
|
|
ZHENG W , MA N . An improved postpruning algorithm for decision tree[J]. Computer and Digital Engineering, 2015(6): 960-966,971.
|
[11] |
张琪, 周琳, 陈亮 , 等. 决策树模型用于结核病治疗方案的分类和预判[J]. 中华疾病控制杂志, 2015(5): 510-513.
|
|
ZHANG Q , ZHOU L , CHEN L , et al. A decision tree model for classification and prediction of tuberculosis treatment[J]. Chinese Journal of Disease Control &Prevention, 2015(5): 510-513.
|
[12] |
李雅秋, 王旗 . 构建用于预测中药化学成分心脏毒性的定量构效关系模型[J]. 北京大学学报(医学版), 2017,49(3): 551-556.
|
|
LI Y Q , WANG Q . Quantitative structureactivity relationship model for prediction of cardiotoxicity of chemical components in traditional Chinese medicines[J]. Journal of Peking University Health Science, 2017,49(3): 551-556.
|
[13] |
徐斌, 苏一丹, 黄山 . 基于km-smote和随机森林的不平衡数据分类[J]. 计算机技术与发展, 2015,25(9): 17-21.
|
|
XU B , SU Y D , HUANG S . Classification of imbalance data based on km-smote algorithm and random forest[J]. Computer Technology and Development, 2015,25(9): 17-21.
|
[14] |
李克文, 杨磊, 刘文英 , 等. 基于RSBoost算法的不平衡数据分类方法[J]. 计算机科学, 2015,42(9): 249-252,267.
|
|
LI K W , YANG L , LIU W Y , et al. Classification of imbalance data based on KM-SMOTE algorithm and Random Forest[J]. Computer Technology and Development, 2015,42(9): 249-252,267.
|
[15] |
肖魏娜, 张为群, 王玲玲 . 一种基于BP神经网络的软件需求分析风险评估模型的研究[J]. 计算机科学, 2011,38(4): 199-202.
|
|
XIAO W N , ZHANG W Q , WANG L L . Study on evaluation model of software requirement analysis risk based on neural network[J]. Computer Science, 2011,38(4): 199-202.
|
[16] |
张月, 黄钢, 章小雷 , 等. 贝叶斯网络在医学领域中的应用研究[J]. 中国医学创新, 2013(4): 145-146.
|
|
ZHANG Y , HUANG G , ZHANG X L , et al. Study on application of bayesian networks in the medical field[J]. Medical Innovation of China, 2013(4): 145-146.
|