大数据 ›› 2022, Vol. 8 ›› Issue (6): 56-73.doi: 10.11959/j.issn.2096-0271.2022050
• 专题:面向人文领域的大数据技术和方法 • 上一篇 下一篇
张伶俐1, 褚琦凯2, 王桂娟3,4, 张巍瀚1, 蒲慧1, 宋振金1, 吴亚东1
出版日期:
2022-11-15
发布日期:
2022-11-01
作者简介:
张伶俐(1998- ),女,四川轻化工大学计算机科学与工程学院硕士生,主要研究方向为可视化与可视分析、自然语言处理等基金资助:
Lingli ZHANG1, Qikai CHU2, Guijuan WANG3,4, Weihan ZHANG1, Hui PU1, Zhenjin SONG1, Yadong WU1
Online:
2022-11-15
Published:
2022-11-01
Supported by:
摘要:
情感分析是对信息情感倾向的挖掘,主要用于舆情监测、商品评论分析以及信息检索等方面。随着社交媒体的快速发展,文本数据量呈现爆炸性增长,文本情感分析成为自然语言处理领域重要的研究热点之一。与此同时,由于情感数据具有海量、时变、非结构性、强关联性的特点,能够直观高效地呈现情感倾向的可视分析技术在这个领域得到广泛应用。回顾了近年来的情感可视分析研究,从表现形式——“主题词”“关联”“演变”“时空分布”4个方面阐述文本情感可视分析方法,并对未来情感分析技术及文本情感可视分析研究进行展望。
中图分类号:
张伶俐, 褚琦凯, 王桂娟, 张巍瀚, 蒲慧, 宋振金, 吴亚东. 文本情感可视分析技术及其在人文领域的应用[J]. 大数据, 2022, 8(6): 56-73.
Lingli ZHANG, Qikai CHU, Guijuan WANG, Weihan ZHANG, Hui PU, Zhenjin SONG, Yadong WU. Text sentiment visual analysis technology and its application in humanities[J]. Big Data Research, 2022, 8(6): 56-73.
表1
近10年前人进行的文本情感分析研究及其实验内容"
分类 | 模型 | 数据集来源 | 分类类别 | 准确率 | F1值 | 优点 | 局限性 |
基于情感词 | 6种情感词典[ | 1 642篇关于“空气污染能导致肥 | 三分类(积极、中性、 | 积极:72.6% | - | 准确反映非结构性 | 词典具有局限性, |
典的文本情 | 胖”主题的微博文本 | 消极) | 中性:73.7% | 特征[ | 部分词典构建困难 | ||
感分析 | 消极:68.3% | 配性文本准确率高 | |||||
6种情感词典[ | 1 839篇关于“高价救护车”主题的 | 积极:67.7% | - | ||||
微博文本 | 中性:74.3% | ||||||
消极:63.8% | |||||||
6种情感词典[ | 1 258篇关于“分享自行车,文明旅 | 积极:68.3% | - | ||||
行”主题的微博文本 | 中性:74.8% | ||||||
消极:59.3% | |||||||
基于语料库的词典 | 电影评论数据集 | 二分类(积极、消极) | 80.2% | - | |||
并用于专门词汇的 | |||||||
情感分析[ | |||||||
基于机器学 | SMO[ | 推特(Twitter)的食品公司的商品 | 三分类(积极、中性、 | 72.33% | - | 相较于基于情感词 | 无法将文本中词汇 |
习的文本情 | 评论数据 | 消极) | 典的方法,基于机器 | 之间的关联程度进 | |||
感分析 | WCT-Bi-LSTM[ | 豆瓣电影评论 | 三分类(积极、中性、 | 82.57% | - | 学习的方法更简单, | 行结合;训练数据 |
消极) | 且可根据不同文本 | 的标签准确与否将 | |||||
京东评论数据 | 70.98% | - | 特征选取和融合不同 | 会对情感分类结果 | |||
的情感分类模型[ | 有较大的影响;按 | ||||||
照文本信息对文本 | |||||||
中的相同字进行不 | |||||||
同的词向量表示会 | |||||||
降低分析的准确性 | |||||||
引入特殊模 | BERT-DCA[ | 中文情感挖掘酒店评论语料 | 二分类(积极、消极) | - | 93.98% | 将文本语段中各词 | 模型数 据需求量 |
型的文本情 | 汇之间的关联程度 | 大且耗时长[ | |||||
感分析 | 在豆瓣电影平台爬取的近30部电影 | 二分类(积极、消极) | - | 94.48% | 进行整合;按照文本 | 型对使用环境要求 | |
的评论 | 信息对文本中的相 | 较高 | |||||
STBi-LSTM[ | SemEval 2018 | - | - | 67.55% | 同字进行不同的词向 | ||
量表示;可将临近领 | |||||||
ATAE-LSTM[ | SemEval 2014 Task 4 | 三分类(积极、中性、 | 84.0% | - | 域的分析模型进行 | ||
消极) | 迁移 | ||||||
二分类(积极、消极) | 89.9% | - | |||||
AEN-BERT[ | SemEval 2014 Task 4 | 三分类(积极、中性、 | 83.12% | 73.96% | |||
消极) |
表2
文本情感可视分析方法分类及特点"
分类 | 代表方法 | 示例论文 | 优点 | 局限性 |
情感主题词可视分析 | 词云图 | [35-37] | 直观展现文本关键词及其情感信息 | 展示效果较为局限 |
星座图,环形图 | [38-39] | 多层次展现文本情感信息 | 图形相对复杂,较难理解 | |
情感关联可视分析 | 节点链接图 | [39-42] | 展现情感的关联性 | 数据关系复杂,易造成视觉混淆 |
树图 | [37,43-45] | 展现情感的层次性组织关系 | 无法有效展示数据的多属性内容 | |
情感演变可视分析 | 折线图、散点图、气泡图、河流图 | [46-49] | 展现情感信息的时间趋势变化,突出情感变化特征 | 对于带时间属性的多变量关联情感可视分析具有挑战性 |
多层圆环图 | [50-51] | 展现情感信息的周期性趋势变化,节省空间 | 数据展示易造成视觉差误解 | |
日历图 | [52-53] | 直观展示时间变化下不同情感信息的对比 | 不适用于数据量较大的数据集 | |
情感时空分布可视分析 | 分类点地图 | [54-57] | 情感信息的离散性展现 | 不适用于数据量较大的情感信息的展现 |
聚类点地图 | [58-60] | 有效表现数据分布,避免产生视觉混淆 | 多属性表达具有挑战性 | |
区域地图 | [61-62] | 展现各区域的情感属性 | 不利于数据的离散性展现 |
[1] | PLUTCHIK R . Human emotions have deep evolutionary roots,a fact that may explain their complexity and provide tools for clinical practice[J]. American Scientist, 2001,89(4): 344-350. |
[2] | KUCHER K , KERREN A . Text visualization techniques:taxonomy,visual survey,and community insights[C]// Proceedings of 2015 IEEE Pacific Visualization Symposium. Piscataway:IEEE Press, 2015: 117-121. |
[3] | KUCHER K , PARADIS C , KERREN A . The state of the art in sentiment visualization[J]. Computer Graphics Forum, 2018,37(1): 71-96. |
[4] | 孙茂松, 陈新雄, 张开旭 ,等. THULAC:一个高效的中文词法分析工具包[Z]. 2016. |
SUN M S , CHEN X X , ZHANG K X ,et al. THULAC:an efficient lexical analyzer for chinese[Z]. 2016. | |
[5] | 王婷, 杨文忠 . 文本情感分析方法研究综述[J]. 计算机工程与应用, 2021,57(12): 11-24. |
WANG T , YANG W Z . Review of text sentiment analysis methods[J]. Computer Engineering and Applications, 2021,57(12): 11-24. | |
[6] | 汤凌燕, 熊聪聪, 王嫄 ,等. 基于深度学习的短文本情感倾向分析综述[J]. 计算机科学与探索, 2021,15(5): 794-811. |
TANG L Y , XIONG C C , WANG Y ,et al. Review of deep learning for short text sentiment tendency analysis[J]. Journal of Frontiers of Computer Science and Technology, 2021,15(5): 794-811. | |
[7] | SCHERER K R , WALLBOTT H G . Evidence for universality and cultural variation of differential emotion response patterning[J]. Journal of Personality and Social Psychology, 1994,66(2): 310-328. |
[8] | GAO B B , XING C , XIE C W ,et al. Deep label distribution learning with label ambiguity[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2017,26(6): 2825-2838. |
[9] | AB DUL-MAGEED M , UNGAR L . Emonet:fine-grained emotion detection with gated recurrent neural networks[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.[S.l.:s.n.], 2017: 718-728. |
[10] | L I M L , LONG Y F , QIN L ,et al. Emotion corpus construction based on selection from hashtags[C]// Proceedings of the 10th International Conference on Language Resources and Evaluation.[S.l.:s.n.], 2016: 1845-1849. |
[11] | YU J F , MARUJO L , JIANG J ,et al. Improving multi-label emotion classification via sentiment classification with dual attention transfer network[C]// Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing.[S.l.:s.n.], 2018. |
[12] | 曾雪强, 华鑫, 刘平生 ,等. 基于情感轮和情感词典的文本情感分布标记增强方法[J]. 计算机学报, 2021,44(6): 1080-1094. |
ZENG X Q , HUA X , LIU P S ,et al. Emotion wheel and lexicon based text emotion distribution label enhancement method[J]. Chinese Journal of Computers, 2021,44(6): 1080-1094. | |
[13] | Z HOU D Y , ZHANG X , ZHOU Y ,et al. Emotion distribution learning from texts[C]// Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.[S.l.:s.n.], 2016: 638-647. |
[14] | ZHOU Y , XUE H , GENG X . Emotion distribution recognition from facial expressions[C]// Proceedings of the 23rd ACM International Conference on Multimedia. New York:ACM Press, 2015: 1247-1250. |
[15] | Z HANG Y X , FU J M , SHE D Y ,et al. Text emotion distribution learning via multi-task convolutional neural network[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence.[S.l.:s.n.], 2018: 4595-4601. |
[16] | ZHANG S X , WEI Z L , WANG Y ,et al. Sentiment analysis of Chinese microblog text based on extended sentiment dictionary[J]. Future Generation Computer Systems, 2018,81: 395-403. |
[17] | RICE D R , ZORN C . Corpus-based dictionaries for sentiment analysis of specialized vocabularies[J]. Political Science Research and Methods, 2021,9(1): 20-35. |
[18] | 钟佳娃, 刘巍, 王思丽 ,等. 文本情感分析方法及应用综述[J]. 数据分析与知识发现, 2021,5(6): 1-13. |
ZHONG J W , LIU W , WANG S L ,et al. Review of methods and applications of text sentiment analysis[J]. Data Analysis and Knowledge Discovery, 2021,5(6): 1-13. | |
[19] | NIZAM H , AKIN S S . Sosyal medyada makine ??renmesi ile duygu analizinde dengeli ve dengesiz veri setlerinin performanslar?n?n kar??la?t?r?lmas?[J]. XIX.Türkiye‘de ?nternet Konferans?, 2014: 1-6. |
[20] | LI H K , WANG L , WANG Y C ,et al. Sentiment analysis based on Bi-LSTM using tone[C]// Proceedings of 2019 15th International Conference on Semantics,Knowledge and Grids. Piscataway:IEEE Press, 2019: 30-35. |
[21] | 谢润忠, 李烨 . 基于BERT和双通道注意力的文本情感分类模型[J]. 数据采集与处理, 2020,35(4): 642-652. |
XIE R Z , LI Y . Text sentiment classification model based on BERT and dual channel attention[J]. Journal of Data Acquisition and Processing, 2020,35(4): 642-652. | |
[22] | ZHANG S W , ZHANG X Z , CHAN J ,et al. Irony detection via sentimentbased transfer learning[J]. Information Processing & Management, 2019,56(5): 1633-1644. |
[23] | WANG Y Q , HUANG M L , ZHU X Y ,et al. Attention-based LSTM for aspect-level sentiment classification[C]// Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.[S.l.:s.n.], 2016: 606-615. |
[24] | SONG Y W , WANG J H , JIANG T ,et al. Attentional encoder network for targeted sentiment classification[J]. arXiv preprint,2019,arXiv:1902.09314. |
[25] | JOSHI A , BHATTACHARYYA P , AHIRE S . Sentiment resources:lexicons and datasets[M]// A practical guide to sentiment analysis. Cham: Springer, 2017. |
[26] | CHEN L C , LEE C M , CHEN M Y . Exploration of social media for sentiment analysis using deep learning[J]. Soft Computing, 2020,24(11): 8187-8197. |
[27] | PAN D H , YUAN J L , LI L ,et al. Deep neural network-based classification model for sentiment analysis[C]// Proceedings of 2019 6th International Conference on Behavioral,Economic and Socio-Cultural Computing. Piscataway:IEEE Press, 2019: 1-4. |
[28] | AL-THUBAITY A , ALQAHTANI Q , ALJANDAL A . Sentiment lexicon for sentiment analysis of Saudi dialect tweets[J]. Procedia Computer Science, 2018,142: 301-307. |
[29] | SAMAL B R , BEHERA A K , PANDA M . Performance analysis of supervised machine learning techniques for sentiment analysis[C]// Proceedings of the 3rd International Conference on Sensing,Signal Processing and Security. Piscataway:IEEE Press, 2017: 128-133. |
[30] | FU Y P , LIU Y , WANG Y J ,et al. Mixed word representation and minimal BiGRU model for sentiment analysis[C]// Proceedings of 2019 20th International Conference on Ubi-Media Computing. Piscataway:IEEE Press, 2019: 30-35. |
[31] | MIKOLOV T , CHEN K , CORRADO G ,et al. Efficient estimation of word representations in vector space[J]. arXiv preprint,2013,arXiv:1301.3781. |
[32] | PENNINGTON J , SOCHER R , MANNING C D . Glove:global vectors for word representation[C]// Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.[S.l.:s.n.], 2014: 1532-1543. |
[33] | DEVLIN J , CHANG M W , LEE K ,et al. BERT:pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint,2018,arXiv:1810.04805. |
[34] | VASWANI A , SHAZEER N , PARMAR N ,et al. Attention is all you need[J]. arXiv preprint,2017,arXiv:1706.03762. |
[35] | WANG J , DENT K D , NORTH C L . Fisheye word cloud for temporal sentiment exploration[C]// Proceedings of CHI 2013 Extended Abstracts on Human Factors in Computing Systems.[S.l.:s.n.], 2013: 1767-1772. |
[36] | CHEN Y , . TagNet:toward tag-based sentiment analysis of large social media data[C]// Proceedings of 2018 IEEE Pacific Visualization Symposium. Piscataway:IEEE Press, 2018: 190-194. |
[37] | WANG W J , ZHOU F , WEI X . The STViewer,a visual method with sentiment analysis:retrieve information and visualize social media text better[C]// Proceedings of the 2nd International Conference on Computer Science and Software Engineering.[S.l.:s.n.], 2019: 50-56. |
[38] | HA H , KIM G N , HWANG W ,et al. CosMovis: analyzing semantic network of sentiment words in movie reviews[C]// Proceedings of 2014 IEEE 4th Symposium on Large Data Analysis and Visualization. Piscataway:IEEE Press, 2014: 113-114. |
[39] | ZHANG W , MA Q , PAN R S ,et al. Visual storytelling of Song Ci and the poets in the social-cultural context of Song dynasty[J]. Visual Informatics, 2021,5(4): 34-40. |
[40] | WANG C B , XIAO Z , LIU Y H ,et al. SentiView:sentiment analysis and visualization for Internet popular topics[J]. IEEE Transactions on Human-Machine Systems, 2013,43(6): 620-630. |
[41] | MOLLA A , BIADGIE Y , SOHN K A . Network-based visualization of opinion mining and sentiment analysis on twitter[C]// Proceedings of 2014 International Conference on IT Convergence and Security. Piscataway:IEEE Press, 2014: 1-4. |
[42] | CAO N , LIN Y R , SUN X H ,et al. Whisper:tracing the spatiotemporal process of information diffusion in real time[J]. IEEE Transactions on Visualization and Computer Graphics, 2012,18(12): 2649-2658. |
[43] | WU Y C , LIU S X , YAN K ,et al. OpinionFlow:visual analysis of opinion diffusion on social media[J]. IEEE Transactions on Visualization and Computer Graphics, 2014,20(12): 17631772. |
[44] | HOQUE E , CARENINI G . ConVis:a visual text analytic system for exploring blog conversations[J]. Computer Graphics Forum, 2014,33(3): 221-230. |
[45] | SHNEIDERMAN B . Tree visualization with tree-maps[J]. ACM Transactions on Graphics, 1992,11(1): 92-99. |
[46] | NASEEM U , RAZZAK I , KHUSHI M ,et al. COVIDSenti:a large-scale benchmark twitter data set for COVID-19 sentiment analysis[J]. IEEE Transactions on Computational Social Systems, 2021,8(4): 1003-1015. |
[47] | STEED C A , DROUHARD M , BEAVER J ,et al. Matisse:a visual analytics system for exploring emotion trends in social media text streams[C]// Proceedings of 2015 IEEE International Conference on Big Data. Piscataway:IEEE Press, 2015: 807-814. |
[48] | LU Y F , KRüGER R , THOM D ,et al. Integrating predictive analytics and social media[C]// Proceedings of 2014 IEEE Conference on Visual Analytics Science and Technology. Piscataway:IEEE Press, 2014: 193-202. |
[49] | WANG X T , LIU S X , CHEN Y ,et al. How ideas flow across multiple social groups[C]// Proceedings of 2016 IEEE Conference on Visual Analytics Science and Technology. Piscataway:IEEE Press, 2016: 51-60. |
[50] | WANG F Y , SALLABERRY A , KLEIN K ,et al. SentiCompass:interactive visualization for exploring and comparing the sentiments of time-varying twitter data[C]// Proceedings of 2015 IEEE Pacific Visualization Symposium. Piscataway:IEEE Press, 2015: 129-133. |
[51] | WU Y C , WEI F R , LIU S X ,et al. OpinionSeer:interactive visualization of hotel customer feedback[J]. IEEE Transactions on Visualization and Computer Graphics, 2010,16(6): 1109-1118. |
[52] | WATSON K , SOHN S S , SCHRIBER S ,et al. StoryPrint: an interactive visualization of stories[C]// Proceedings of the 24th International Conference on Intelligent User Interfaces. New York:ACM Press, 2019: 303-311. |
[53] | ROHRDANTZ C , HAO M C , DAYAL U ,et al. Feature-based visual sentiment analysis of text document streams[J]. ACM Transactions on Intelligent Systems and Technology, 2012,3(2): 1-25. |
[54] | KHUN N H , THANT H A . Visualization of twitter sentiment during the period of US banned Huawei[C]// Proceedings of 2019 International Conference on Advanced Information Technologies. Piscataway:IEEE Press, 2019: 274-279. |
[55] | SIJTSMA B , QVARFORDT P , CHEN F . Tweetviz:visualizing tweets for business intelligence[C]// Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. New York:ACM Press, 2016: 1153-1156. |
[56] | HAO M C , ROHRDANTZ C , JANETZKO H ,et al. Visual sentiment analysis of customer feedback streams using geotemporal term associations[J]. Information Visualization, 2013,12(3/4): 273-290. |
[57] | ZHANG C H , LIU Y H , WANG C B . Timespace varying visual analysis of microblog sentiment[C]// Proceedings of the 6th International Symposium on Visual Information Communication and Interaction. New York:ACM Press, 2013: 64-71. |
[58] | MURTHY J S , SIDDESH G M , SRINIVASA K G . TwitSenti:a realtime twitter sentiment analysis and visualization framework[J]. Journal of Information & Knowledge Management, 2019,18(2): 1950013. |
[59] | BANERJEE R , ELGARROUSSI K , WANG S J ,et al. Tweet emotion mapping:understanding US emotions in time and space[C]// Proceedings of 2018 IEEE 1st International Conference on Artificial Intelligence and Knowledge Engineering. Piscataway:IEEE Press, 2018: 93-100. |
[60] | ALAM M , KASCHURA M , SACK H . Apollo:Twitter stream analyzer of trending hashtags:a case-study of COVID-19[C]// Proceedings of the ISWC.[S.l.:s.n.], 2020. |
[61] | YAQUB U , SHARMA N , PABREJA R ,et al. Location-based sentiment analyses and visualization of twitter election data[J]. Digital Government:Research and Practice, 2020,1(2): 1-19. |
[62] | KUANG C , TANG J Y , LIU Z Y ,et al. ImgWordle:image and text visualization for events in microblogging services[C]// Proceedings of 2014 International Working Conference on Advanced Visual Interfaces.[S.l.:s.n.], 2014: 371-372. |
[63] | YATANI K , NOVATI M , TRUSTY A ,et al. Review spotlight:a user interface for summarizing user-generated reviews using adjective-noun word pairs[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.[S.l.:s.n.], 2011: 1541-1550. |
[64] | FU S W , ZHAO J , CUI W W ,et al. Visual analysis of MOOC forums with iForum[J]. IEEE Transactions on Visualization and Computer Graphics, 2017,23(1): 201-210. |
[65] | VIZCARRA J , KOZAKI K , TORRES RUIZ M ,et al. Knowledge-based sentiment analysis and visualization on social networks[J]. New Generation Computing, 2021,39(1): 199-229. |
[66] | GAMON M , AUE A , CORSTON-OLIVER S ,et al. Pulse: mining customer opinions from free text[C]// Proceedings of Advances in Intelligent Data Analysis VI. Berlin:Springer, 2005: 121-132. |
[67] | OHBE T , OZONO T , SHINTANI T . Developing a sentiment polarity visualization system for local event information analysis[C]// Proceedings of 2016 5th IIAI International Congress on Advanced Applied Informatics. Piscataway:IEEE Press, 2016: 19-24. |
[68] | ZHAN G , WANG M , ZHAN M Y . Public opinion detection in an online lending forum:sentiment analysis and data visualization[C]// Proceedings of 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics. Piscataway:IEEE Press, 2020: 211-213. |
[69] | HAVRE S , HETZLER E , WHITNEY P ,et al. ThemeRiver:visualizing thematic changes in large document collections[J]. IEEE Transactions on Visualization and Computer Graphics, 2002,8(1): 9-20. |
[70] | BROOKS M , ROBINSON J J , TORKILDSON M K ,et al. Collaborative visual analysis of sentimentin twitter events[C]// Proceedings of the International Conference on Cooperative Design,Visualization and Engineering. Cham:Springer, 2014: 1-8. |
[71] | KUCHER K , MARTINS R M , PARADIS C ,et al. StanceVis Prime:visual analysis of sentiment and stance in social media texts[J]. Journal of Visualization, 2020,23(6): 1015-1034. |
[72] | CAO N , LU L , LIN Y R ,et al. SocialHelix:visual analysis of sentiment divergence in social media[J]. Journal of Visualization, 2015,18(2): 221-235. |
[73] | FELDMAN BARRETT L , RUSSELL J A . Independence and bipolarity in the structure of current affect[J]. Journal of Personality and Social Psychology, 1998,74(4): 967-984. |
[74] | KEIM D A , OELKE D . Literature fingerprinting:a new method for visual literary analysis[C]// Proceedings of 2007 IEEE Symposium on Visual Analytics Science and Technology. Piscataway:IEEE Press, 2007: 115-122. |
[75] | 陈晓慧, 徐立, 葛磊 ,等. 传染病传播数据可视分析综述[J]. 计算机辅助设计与图形学学报, 2020,32(10): 1581-1593. |
CHEN X H , XU L , GE L ,et al. A survey of infectious disease transmission data visual analysis[J]. Journal of ComputerAided Design & Computer Graphics, 2020,32(10): 1581-1593. | |
[76] | QIU R G , RAVI R R , QIU L L . Aggregating and visualizing public opinions and sentiment trends on the US higher education[C]// Proceedings of the 17th International Conference on Information Integration and Web-based Applications & Services. New York:ACM Press, 2015: 1-5. |
[77] | ZHAO Y Y , QIN B , LIU T ,et al. Social sentiment sensor:a visualization system for topic detection and topic sentiment analysis on microblog[J]. Multimedia Tools and Applications, 2016,75(15): 8843-8860. |
[1] | 梅宏, 杜小勇, 金海, 程学旗, 柴云鹏, 石宣化, 靳小龙, 王亚沙, 刘驰. 大数据技术前瞻[J]. 大数据, 2023, 9(1): 1-20. |
[2] | 吴建汉, 司世景, 王健宗, 肖京. 联邦学习攻击与防御综述[J]. 大数据, 2022, 8(5): 12-32. |
[3] | 徐康庭, 宋威. 结合语言知识和深度学习的中文文本情感分析方法[J]. 大数据, 2022, 8(3): 115-127. |
[4] | 潘小多, 李新, 冉有华, 郭学军. 开放科学背景下的科学数据开放共享:国家青藏高原科学数据中心的实践[J]. 大数据, 2022, 8(1): 113-120. |
[5] | 任帅, 陈丹丹, 储根深, 白鹤, 李慧昭, 何远杰, 胡长军. 基于材料数值计算大数据的材料辐照机理发现[J]. 大数据, 2021, 7(6): 3-18. |
[6] | 解翠, 李明悝, 陈萍, 李孝天, 宋键, 董军宇, 赵佳萌. 大数据可视分析在海洋领域的应用[J]. 大数据, 2021, 7(2): 3-14. |
[7] | 曹安琪, 陈泓宇, 谢潇, 巫英才. 足球比赛数据可视分析[J]. 大数据, 2021, 7(2): 15-31. |
[8] | 王桂娟, 周锐, 蔡梦杰, 汤勇, 李茸茸, 陈华容, 吴亚东. 基于移动通信数据的城市可视分析研究[J]. 大数据, 2021, 7(2): 32-60. |
[9] | 陈谊, 孙梦, 武彩霞, 孙小然. 食品安全大数据可视化关联分析[J]. 大数据, 2021, 7(2): 61-77. |
[10] | 陈超, 吴亚东, 付朝帅, 童兴, 李攀, 褚琦凯, 王雪楠. 中国白酒文化可视化研究[J]. 大数据, 2021, 7(2): 78-98. |
[11] | 李刚, 郑佳, 尹华山, 黄文超. 大数据技术在疫情精准防控中的应用[J]. 大数据, 2021, 7(1): 124-134. |
[12] | 于璠. 新一代深度学习框架研究[J]. 大数据, 2020, 6(4): 69-80. |
[13] | 丁小欧, 王宏志, 于晟健. 工业时序大数据质量管理[J]. 大数据, 2019, 5(6): 19-29. |
[14] | 肖时耀, 吕慰, 陈洒然, 秦烁, 黄格, 蔡梦思, 谭跃进, 谭旭, 吕欣. 基于百度贴吧的HIV高危人群特征分析[J]. 大数据, 2019, 5(1): 98-108. |
[15] | 张旭东, 孙圣力, 王洪超. 基于数据挖掘的触诊成像乳腺癌智能诊断模型和方法[J]. 大数据, 2019, 5(1): 68-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|