[1] |
NVIDIA. CUDA C++ programming guide[Z]. 2020.
|
[2] |
YAN Z F , LIN Y Z , PENG L ,et al. Harmonia:a high throughput B+tree for GPUS[C]// The 24th Symposium on Principles and Practice of Parallel Programming. New York:ACM Press, 2019: 133-144.
|
[3] |
SHAHVARANI A , JACOBSEN H A . A hybrid B+tree as solution for in-memory indexing on CPU-GPU heterogeneous computing platforms[C]// The 2016 International Conference on Management of Data.[S.l.:s.n]. 2016: 1523-1538
|
[4] |
KRZYSZTOF K , . B+-tree optimized for GPGPU[C]// OTM Confederated International Conferences.[S.l]: Springer, 2012: 843-854.
|
[5] |
JORDAN F , ANDREW W , KEVIN S . Accelerating braided B+tree searches on a GPU with CUDA[C]// The 2nd Workshop on Applications for Multi and Many Core Processors:Analysis,Implementation,and Performance.[S.l.:s.n]. 2011: 1-11.
|
[6] |
ZHANG W H , YAN Z F , LIN Y Z ,et al. A high throughput B+tree for SIMD architectures[J]. IEEE Transaction on Parallel and Distributed Systems, 2020,31(3): 707-720.
|
[7] |
HERLIHY M , ELIOT J , MOSS B . Transactional memory:architectural support for lock-free data structures[C]// The 20th Annual International Symposium on Computer Architecture.[S.l.:s.n]. 1993: 289-300.
|
[8] |
SHAVIT N , TOUITOU D . Software transactional memory[C]// The 14th ACM Symposium on Principles of Distributed Computing. New York:ACM Press, 1995: 204-213.
|
[9] |
LOMET D B , . Process structuring,synchronization,and recovery using atomic actions[C]// The ACM Conference on Language Design for Reliable Software. New York:ACM Press, 1977: 128-137.
|
[10] |
HARRIS T , ADRIáN C ,et al. Transactional memory:an overview[J]. IEEE Micro, 2007,27(3): 8-29.
|
[11] |
WANG X , ZHANG W H , WANG Z G ,et al. Eunomia:scaling concurrent searchtrees under contention using HTM[C]// The 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York:ACM Press, 2017: 385-399.
|
[12] |
CEDERMAN D , TSIGAS P , CHAUDHRY M T . Towards a software transactional memory for graphics processors[C]// Eurographics Conference on Parallel Graphics &Visualization.[S.l.:s.n]. 2010: 121-129.
|
[13] |
XU Y L , WANG R , GOSWAMI N ,et al. Software transactional memory for GPU architectures[J]. Computer Architecture Letters, 2014,13(1): 49-52.
|
[14] |
SHEN Q , SHARP C , BLEWITT W ,et al. Priority rule based software transactions for the GPU[C]// The European Conference on Parallel Processing.[S.l.:s.n], 2015: 361-372.
|
[15] |
HOLEY A , ZHAI A . Lightweight software transactions on GPUs[C]// The 43rd International Conference on Parallel Processing.[S.l.:s.n], 2014: 461-470.
|
[16] |
AWAD M A , ASHKIANI S , JOHNSON R ,et al. Engineering a high-performance GPU B-tree[C]// The 24th ACM SIGPLAN Symposium on Principles and Practice of Parallel.[S.l.:s.n], 2019: 145-157.
|
[17] |
FUNG W W L , SINGH I , BROWNSWORD A ,et al. KILO TM:hardware transactional memory for GPU architectures[J]. IEEE Micro, 2012,32(3): 7-16.
|
[18] |
FUNG W W L , AAMODTT M . Energy efficient GPU transactional memory via space-time optimizations[C]// The 46th Annual International Symposium on Microarchitecture. New York:ACM Press, 2013: 408-420.
|
[19] |
SUI C , LU P , SAMUEL I . Accelerating GPU hardware transactional memory with snapshot isolation[C]// The 44th Annual International Symposium on Computer Architecture. New York:ACM Press, 2017: 282-294.
|
[20] |
FELBER P , FETZER C , RIEGEL T . Dynamic performance tuning of word based software transactional memory[C]// The 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York:ACM Press, 2008: 237-246.
|
[21] |
FUNG W W L , SHAM I , YUAN G L ,et al. Dynamic warp formation:efficient MIMD control flow on SIMD graphics hardware[J]. ACM Transactions on Architecture and Code Optimization, 2009,6(2).
|
[22] |
BAKHODA A , YUAN G L , FUNG W W L ,et al. Analyzing CUDA workloads using a detailed GPU simulator[C]// 2009 IEEE International Symposium on Performance Analysis of Systems and Software. Piscataway:IEEE Press, 2009: 163-174.
|