大数据 ›› 2020, Vol. 6 ›› Issue (4): 3-17.doi: 10.11959/j.issn.2096-0271.2020029

• 专题:大数据异构并行系统 • 上一篇    下一篇

GPU事务性内存技术研究

林玉哲1,2,张为华1,2   

  1. 1 复旦大学软件学院,上海 201203
    2 上海市数据科学重点实验室,上海 201203
  • 出版日期:2020-07-15 发布日期:2020-07-18
  • 作者简介:林玉哲(1996- ),男,复旦大学软件学院硕士生,主要研究方向为GPU、并行计算、事务性内存等|张为华(1974- ),男,复旦大学软件学院教授,主要研究方向为编译、体系结构、并行计算、系统软件等

A research on GPU transactional memory

Yuzhe LIN1,2,Weihua ZHANG1,2   

  1. 1 Software School,Fudan University,Shanghai 201203,China
    2 Shanghai Key Laboratory of Data Science,Shanghai 201203,China
  • Online:2020-07-15 Published:2020-07-18

摘要:

GPU是并行计算领域重要的体系结构之一,然而在面对高数据竞争的场景时,程序员往往需要设计复杂的并行方案。为了简化这一过程,GPU事务性内存实现了复杂的数据同步和并行,对外则仅提供简单的API。首先介绍了GPU事务性内存的研究背景。其次,讨论了近年的GPU事务性内存的设计方案与策略,分析了不同设计方案遇到的问题和解决方案,包括硬件和软件上的实现。最后对GPU事务性内存的现状和未来的发展做出了总结和展望。

关键词: GPU, 事务性内存, 并行计算

Abstract:

GPU is one of the important architectures in parallel computing,however,when dealing with high data racing scenarios,programmers often need to design complex parallel schemes.In order to simplify this process,GPU transactional memory implements complex data synchronization and parallelism,and only provides simple API.The research background of GPU transactional memory was introduced.Then,the designs and strategies of GPU transactional memory in recent years were discussed,and the problems and solutions of different designs were analyzed,including the implementation of hardware and software.Finally,the current situation and future development of GPU transactional memory were summarized and prospected.

Key words: GPU, transactional memory, parallel computing

中图分类号: 

No Suggested Reading articles found!