[1] |
李国杰 . 对大数据的再认识[J]. 大数据, 2015,1(1): 1-9.
|
|
LI G J . Further understanding of big data[J]. Big Data Research, 2015,1(1): 1-9.
|
[2] |
梁吉业, 冯晨娇, 宋鹏 . 大数据相关分析综述[J]. 计算机学报, 2016,39(1): 1-18.
|
|
LIANG J Y , FENG C J , SONG P . A survey on correlation analysis of big data[J]. Chinese Journal of Computers, 2016,39(1): 1-18.
|
[3] |
胡湘红, 彭衡, 杨灿 ,等. 基因大数据的集成分析[J]. 大数据, 2019,5(4): 67-88.
|
|
HU X H , PENG H , YANG C ,et al. Integrative analysis for big data in genomics[J]. Big Data Research, 2019,5(4): 67-88.
|
[4] |
杨孟辉, 杜小勇 . 政府大数据治理:政府管理的新形态[J]. 大数据, 2020,6(2): 3-18.
|
|
YANG M H , DU X Y . Big data governance in governments:a new form of the government administration[J]. Big Data Research, 2020,6(2): 3-18.
|
[5] |
刘晓波, 蒋阳升, 唐优华 . 综合交通大数据应用技术创新平台[J]. 大数据, 2018,4(6): 78-84.
|
|
LIU X B , JIANG Y S , TANG Y H . Innovation platform of integrated transportation big data application technology[J]. Big Data Research, 2018,4(6): 78-84.
|
[6] |
CAO F L , YAO K X , LIANG J Y . Deconvolutional neural network for image super-resolution[J]. Neural Networks, 2020,132: 394-404.
|
[7] |
YAO K X , CAO F L , LEUNG Y ,et al. Deep neural network compression through interpretability-based filter pruning[J]. Pattern Recognition, 2021,119:108056.
|
[8] |
刘建伟, 刘媛, 罗雄麟 . 半监督学习方法[J]. 计算机学报, 2015,38(8): 1592-1617.
|
|
LIU J W , LIU Y , LUO X L . Semi-supervised learning methods[J]. Chinese Journal of Computers, 2015,38(8): 1592-1617.
|
[9] |
BERTHELOT D , CARLINI N , GOODFELLOW I ,et al. MixMatch:a holistic approach to semi-supervised learning[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Cambridge:The MIT Press, 2019: 5049-5059.
|
[10] |
LAINE S , AILA T M . Temporal ensembling for semi-supervised learning[C]// Proceedings of the 5th International Conference on Learning Representations.[S.l.:s.n.], 2017.
|
[11] |
TARVAINEN A , VALPOLA H . Mean teachers are better role models:weight-averaged consistency targets improve semi-supervised deep learning results[C]// Proceedings of the 31st Conference on Neural Information Processing Systems. Cambridge:The MIT Press, 2017: 1195-1204.
|
[12] |
MIYATO T , MAEDA S I , KOYAMA M ,et al. Virtual adversarial training:a regularization method for supervised and semi-supervised learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,41(8): 1979-1993.
|
[13] |
VERMA V , KANNALA J , LAMB A ,et al. Interpolation consistency training for semi-supervised learning[J]. Neural Networks, 2022,145: 90-106.
|
[14] |
XIE Q Z , DAI Z H , HOVY E ,et al. Unsupervised data augmentation for consistency training[C]// Proceedings of the 30th Advances in Neural Information Processing Systems. Cambridge:The MIT Press, 2020: 6256-6268.
|
[15] |
VAN ENGELEN J E , HOOS H H . A survey on semi-supervised learning[J]. Machine Learning, 2020,109(2): 373-440.
|
[16] |
ZHU X J , GHAHRAMANI Z , LAFFERTY J D . Semi-supervised learning using gaussian fields and harmonic functions[C]// Proceedings of the 20th International Conference on Machine Learning. Palo Alto:AAAI Press, 2003: 912-919.
|
[17] |
BELKIN M , NIYOGI P , SINDHWANI V . Manifold regularization:a geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006,7: 2399-2434.
|
[18] |
BAI L , WANG J B , LIANG J Y ,et al. New label propagation algorithm with pairwise constraints[J]. Pattern Recognition, 2020,106:107411.
|
[19] |
WANG J , LIANG J Q , CUI J B ,et al. Semi-supervised learning with mixedorder graph convolutional networks[J]. Information Sciences, 2021,573: 171-181.
|
[20] |
LIANG J Y , CUI J B , WANG J ,et al. Graph-based semi-supervised learning via improving the quality of the graph dynamically[J]. Machine Learning, 2021,110(6): 1345-1388.
|
[21] |
JOACHIMS T , . Transductive inference for text classification using support vector machines[C]// Proceedings of the 16th International Conference on Machine Learning. Bled:Morgan Kaufmann, 1999: 200-209.
|
[22] |
BLUM A , MITCHELL T . Combining labeled and unlabeled data with cotraining[C]// Proceedings of the 11th Annual Conference on Computational Learning Theory. New York:ACM Press, 1998: 92-100.
|
[23] |
WANG W , ZHOU Z H . A new analysis of co-training[C]// Proceedings of the 27th International Conference on Machine Learning. Haifa:Omnipress, 2010: 1135-1142.
|
[24] |
LOOG M . Contrastive pessimistic likelihood estimation for semi-supervised classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(3): 462-475.
|
[25] |
SHAHSHAHANI B M , LANDGREBE D A . The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(5): 1087-1095.
|
[26] |
BAI L , LIANG J Y , CAO F Y . Semisupervised clustering with constraints of different types from multiple information sources[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(9): 3247-3258.
|
[27] |
LI Y F , ZHA H W , ZHOU Z H . Learning safe prediction for semi-supervised regression[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2017: 2217-2223.
|
[28] |
OLIVER A , ODENA A , RAFFEL C ,et al. Realistic evaluation of deep semisupervised learning algorithms[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Cambridge:The MIT Press, 2018: 3239-3250.
|
[29] |
DEVLIN J , CHANG M W , LEE K ,et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 13th Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Minneapolis:Association for Computational Linguistics, 2019: 4171-4186.
|