大数据 ›› 2020, Vol. 6 ›› Issue (6): 83-104.doi: 10.11959/j.issn.2096-0271.2020056
出版日期:
2020-11-15
发布日期:
2020-12-12
作者简介:
王丽会(1982- ),女,博士,贵州大学计算机科学与技术学院、贵州省智能医学影像分析与精准诊断重点实验室副教授,主要研究方向为医学成像、机器学习与深度学习、医学图像处理、计算机视觉|秦永彬(1980- ),男,博士,贵州大学计算机科学与技术学院、贵州省智能医学影像分析与精准诊断重点实验室教授,主要研究方向为大数据治理与应用、文本计算与认知智能
基金资助:
Lihui WANG1,2,Yongbin QIN1,2()
Online:
2020-11-15
Published:
2020-12-12
Supported by:
摘要:
医学影像是临床诊断的重要辅助工具,医学影像数据占临床数据的90%,因此,充分挖掘医学影像信息将对临床智能诊断、智能决策以及预后起到重要的作用。随着深度学习的出现,利用深度神经网络分析医学影像已成为目前研究的主流。根据医学影像分析的流程,从医学影像数据的产生、医学影像的预处理,到医学影像的分类预测,充分阐述了深度学习在每一环节的应用研究现状,并根据其面临的问题,对未来的发展趋势进行了展望。
中图分类号:
王丽会, 秦永彬. 深度学习在医学影像中的研究进展及发展趋势[J]. 大数据, 2020, 6(6): 83-104.
Lihui WANG, Yongbin QIN. State of the art and future perspectives of the applications of deep learning in the medical image analysis[J]. Big Data Research, 2020, 6(6): 83-104.
表1
深度学习配准的代表性模型总结"
模型类型 | 配准类型 | 数据集 | 变形场来源 | 器官 | 模型 | 评价指标 | 文献 |
有监督配准模型 | 刚体配准 | 内部数据集 | 合成形变场 | 骨骼X-ray | CNN | mTREproj:0.282 mm | [ |
刚体配准 | 内部数据集 | 合成形变场 | 脊柱CT和X-ray | PDA | TRE:5.65 mm | [ | |
非线性配准 | LBPA40、ISBR18、CUMC12、MGH10 | 真实形变场 | 脑部MR | 3D-CNN | [ | ||
非线性配准 | 内部数据集 | 真实形变场 | 前列腺超声和MR | CNN | TRE=8.5 mm | [ | |
Dice=0.86 | |||||||
非线性配准 | ACDC dataset | 分割监督 | 心脏MR | CNN | Dice=0.865 | [ | |
非线性配准 | 内部数据集 | 标签监督 | 前列腺CT和MR | CNN | ASD=1.58 mm | [ | |
Dice=0.873 | |||||||
非线性配准 | IBSR18、CUMC12、MGH10、IXI30 | 双监督学习形变场 | 脑部MR | BIRNet | Dice>0.728 (分脑区比较) | [ | |
无监督配准模型 | 非线性配准 | ADNI、OASIS、ABIDE、ADHD200、MCIC、PPMI、HABS、Harvard GSP | 脑部MR | VoxelMorph | Dice=0.78 | [ | |
非线性配准 | Mindboggle101 | 脑部MR | FAIM | Dice=0.533(左上顶叶) | [ | ||
非线性配准 | ADNI | 脑部MR | ICNet | Dice=0.88 | [ | ||
ASD=0.71 mm | |||||||
HD=12.71 mm(白质) | |||||||
非线性配准 | 内部数据集 | 脑部MR | ADMIR | Dice=0.91 | [ | ||
HD=2.68 | |||||||
ASD=0.59 | |||||||
非线性配准 | 内部数据集 | 前列腺MR和超声 | AirNet | TRE=3.48 mm | [ | ||
非线性配准 | 内部数据集、Sunybrook | 视网膜图像、心脏MR | GAN | Dice=0.887/0.79HD=8.0/5.12 | [ | ||
(视网膜/心脏) | |||||||
非线性配准 | VISCERAL Anatomy3 benchmark | 全身MR、CT | GAN | Dice=0.757 (胸部)Dice=0.783(腹部) | [ |
表2
典型的深度学习医学图像分割方法"
数据集 | 模型 | 器官 | 损失 | 精度 | 文献 |
内部数据集 | 2.5D CNN | 脑部、乳腺MR,心脏血管造影图像 | 交叉熵损失 | [ | |
2016 MICCAI IVDs挑战赛数据集 | 3D FCN | 椎间盘MR | 加权交叉熵损失 | Dice=0.912 | [ |
2017 MICCAI grand challenge on infant brain MRI | Multistream 3D FCN | 脑部MR | 似然损失 | Dice=0.954 | [ |
ASD=0.127 | |||||
MHD=9.62 (脑脊液) | |||||
MICCAI 2009 LV Segmentation Challenge | Recurrent FCN | 心脏MR | 交叉熵损失 | Dice=0.90 | [ |
APD=2.05 | |||||
TCIA(ProstateX,QINHEADNECK) | U-Net | 多器官 | Combo损失 | Dice=0.92 | [ |
DRIVE、STARE、CHASH_DB1 | R2 U-Net | 多器官 | 二值交叉熵损失 | Dice=0.86 | [ |
PROMISE 2012 challenge | V-Net | 前列腺MR | Dice损失 | Dice=0.87 | [ |
HD=5.71 mm | |||||
DRIVE Dataset、ISIC 2018 | Bi-LSTM | 多器官 | 二值交叉熵损失 | F1-Score>0.99 | [ |
MICCAI BRATS 2013,2015 | SegGAN | 头部MR | 多尺度L1范数损失 | Dice=0.84/0.85(BRATS 2013数据集/BRATS 2015数据集) | [ |
INbreast dataset,DDSM dataset | cGAN | 乳腺钼靶图像 | Dice以及对抗损失 | Dice=0.94(INbreast) | [ |
表3
基于深度学习的医学图像分类总结"
器官 | 数据集 | 方法 | 目标 | 精度 | 文献 |
肺 | LIDC-IDRI、ANODE09 challenge、DLCST | 卷积神经网络 | 结节分类 | Sensitivity=0.854 | [ |
LIDC-IDRI | 知识学习 | 结节分类 | AUC=0.957 | [ | |
Chest X-ray 14 | 注意力卷积神经网络 | 肺部疾病分类 | AUC=0.871 | [ | |
HUG database | 迁移学习 | 间质性肺疾病分类 | F1-score=0.88 | [ | |
LIDC以及内部数据集 | 迁移学习 | 肺结节检测 | AUC=0.812 | [ | |
LIDC-IDRI | 知识学习 | 肺结节分类 | AUC=0.957 | [ | |
LIDC-IDRI | 流形学习 | 肺结节分类 | ACC=0.90 | [ | |
乳腺 | DDSM、MIAS、BCDR | 迁移学习 | 乳腺癌分类 | AUC=0.997(MIAS) AUC=0.956(BCDR) | [ |
皮肤 | ISIC 2016,2017 | 迁移学习 | 皮肤病分类 | AUC=0.914 | [ |
2017 ISBI Challenge on Skin Lesion Analysis Towards Melanoma Detection、EDRA、ISIC | 知识学习 | 皮肤病分类 | AUC=0.917 | [ | |
ISIC | 人工与学习特征结合 | 皮肤病分类 | AUC=0.780 | [ | |
眼底 | Messidor | AlexNet | 糖尿病视网膜病变分级 | ACC=0.966 | [ |
内部数据集 | 注意力卷积神经网络 | 青光眼分类 | AUC=0.975 | [ | |
UCSD、NEH | 病变感知卷积神经网络 | 眼底疾病分类 | AUC>0.96 | [ | |
内部数据集 | 知识学习 | 青光眼分类 | ACC=0.915 | [ |
[1] | GONDARA L , . Medical image denoising using convolutional denoising autoencoders[C]// 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).[S.l.:s.n]. 2016: 241-246. |
[2] | CHEN H , ZHANG Y , KALRA M K ,et al. Low-dose CT with a residual encoderdecoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017,36(12): 2524-2535. |
[3] | KANG E , MIN J H , YE J C . A deep convolutional neural network using directional wavelets for low‐dose X‐ray CT reconstruction[J]. Medical Physics, 2017,44(10): 360-375. |
[4] | YANG Q S , YAN P K , ZHANG Y B ,et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss[J]. IEEE Transactions on Medical Imaging, 2018,37(6): 1348-1357. |
[5] | YOU C Y , YANG Q S , SHAN H M ,et al. Structurally-sensitive multi-scale deep neural network for low-dose CT denoising[J]. IEEE Access, 2018,6: 41839-41855. |
[6] | MA Y J , WEI B , FENG P ,et al. Low-dose CT image denoising using a generative adversarial network with a hybrid loss function for noise learning[J]. IEEE Access, 2020,8: 67519-67529. |
[7] | YIN X R , ZHAO Q L , LIU J ,et al. Domain progressive 3D residual convolution network to improve low-dose CT imaging[J]. IEEE Transactions on Medical Imaging, 2019,38(12): 2903-2913. |
[8] | WU D F , GONG K , KIM K ,et al. Consensus neural network for medical imaging denoising with only noisy training samples[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.[S.l.:s.n]. ], 2019: 741-749. |
[9] | GEORGESCU M I , IONESCU R T , VERGA N . Convolutional neural networks with intermediate loss for 3D super-resolution of CT and MRI scans[J]. IEEE Access, 2020,8: 49112-49124. |
[10] | OKTAY O , BAI W J , LEE M ,et al. Multiinput cardiac image super-resolution using convolutional neural networks[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2016: 246-254. |
[11] | PHAM C H,DíEZ C T , MEUNIER H ,et al. Multiscale brain MRI super-resolution using deep 3D convolutional networks[J]. Computerized Medical Imaging and Graphics, 2019:77. |
[12] | MCDONAGH S , HOU B , ALANSARYET A ,et al. Context-sensitive super-resolution for fast fetal magnetic resonance imaging[C]// Molecular Imaging,Reconstruction and Analysis of Moving Body Organs,and Stroke Imaging and Treatment. Cham:Springer, 2017: 116-126. |
[13] | ZHENG Y , ZHEN B , CHEN A ,et al. A hybrid convolutional neural network for super-resolution reconstruction of MR images[J]. Medical Physics, 2020,47(7): 3013-3022. |
[14] | ZHAO X L , ZHANG Y L , ZHANG T ,et al. Channel splitting network for single MR image super-resolution[J]. IEEE Transactions on Image Processing, 2019,28(11): 5649-5662. |
[15] | TANNO R , WORRALL D E , GHOSH A ,et al. Bayesian image quality transfer with CNNs:exploring uncertainty in dMRI super-resolution[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2017: 611-619. |
[16] | PENG C , LIN W A , LIAO H F ,et al. SAINT:spatially aware interpolation network for medical slice synthesis[C]// The IEEE/CVF Conference on Computer Vision and Pattern Recognition.[S.l.:s.n]. 2020: 7750-7759. |
[17] | SHI J , LIU Q P , WANG C F ,et al. Superresolution reconstruction of MR image with a novel residual learning network algorithm[J]. Physics in Medicine &Biology, 2018,63(8):85011. |
[18] | LYU Q , SHAN H M , STEBER C ,et al. Multi-contrast super-resolution MRI through a progressive network[J]. IEEE Transactions on Medical Imaging, 2020,39(9): 2738-2749. |
[19] | YANG Y , SUN J , LI H B ,et al. ADMMCSNet:a deep learning approach for image compressive sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(3): 521-538. |
[20] | ADLER J,?KTEM O . Learned primaldual reconstruction[J]. IEEE Transactions on Medical Imaging, 2018,37(6): 1322-1332. |
[21] | CHENG J , WANG H F , YING L ,et al. Model learning:primal dual networks for fast MR imaging[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.[S.l.:s.n]. 2019: 21-29. |
[22] | ZHANG H M , DONG B , LIU B D . JSRNet:a deep network for joint spatial-radon domain CT reconstruction from incomplete data[C]// IEEE International Conference on Acoustics,Speech and Signal Processing.[S.l.:s.n]. 2019: 3657-3661. |
[23] | LEE D , YOO J , YE J C . Deep residual learning for compressed sensing MRI[C]// 2017 IEEE 14th International Symposium on Biomedical Imaging. Piscataway:IEEE Press, 2017: 15-18. |
[24] | LEE D , YOO J , TAK S ,et al. Deep residual learning for accelerated MRI using magnitude and phase networks[J]. IEEE Transactions on Biomedical Engineering, 2018,65(9): 1985-1995. |
[25] | SCHLEMPER J , CABALLERO J , HAJNAL J V ,et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction[J]. IEEE Transactions on Medical Imaging, 2017,37(2): 491-503. |
[26] | HAN Y , YOO J , KIM H H ,et al. Deep learning with domain adaptation for accelerated projection‐reconstruction MR[J]. Magnetic Resonance in Medicine, 2018,80(3): 1189-1205. |
[27] | EO T , JUN Y , KIM T ,et al. KIKI‐Net:cross‐domain convolutional neural networks for reconstructing undersampled magnetic resonance images[J]. Magnetic Resonance in Medicine, 2018,80(5): 2188-2201. |
[28] | BAO L J , YE F Z , CAI C B ,et al. Undersampled MR image reconstruction using an enhanced recursive residual network[J]. Journal of Magnetic Resonance, 2019,305: 232-246. |
[29] | DAI Y X , ZHUANG P X . Compressed sensing MRI via a multi-scale dilated residual convolution network[J]. Journal of Magnetic Resonance Imaging, 2019,63: 93-104. |
[30] | YANG G , YU S M , DONG H ,et al. DAGAN:deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction[J]. IEEE Transactions on Medical Imaging, 2017,37(6): 1310-1321. |
[31] | QUAN T M , NGUYEN-DUC T , JEONG W K . Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss[J]. IEEE Transactions on Medical Imaging, 2018,37(6): 1488-1497. |
[32] | MARDANI M , GONG E H , CHENG J Y ,et al. Deep generative adversarial neural networks for compressive sensing MRI[J]. IEEE Transactions on Medical Imaging, 2019,38(1): 167-179. |
[33] | KITCHEN A , SEAH J . Deep generative adversarial neural networks for realistic prostate lesion MRI synthesis[J]. arXiv preprint,2017,arXiv:1708.00129, |
[34] | SCHLEGL T , SEEB?CK P , WALDSTEIN S M ,et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]// International Conference on Information Processing in Medical Imaging. Cham:Springer, 2017: 146-157. |
[35] | CHUQUICUSMA M J M , HUSSEIN S , BURT J ,et al. How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis[C]// 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).[S.l.:s.n]. 2018: 240-244. |
[36] | FRID-ADAR M , DIAMANT I , KLANG E ,et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification[J]. Neurocomputing, 2018,321: 321-331. |
[37] | BERMUDEZ C , PLASSARD A J , DAVIS L T ,et al. Learning implicit brain MRI manifolds with deep learning[C]// SPIE Medical Imaging Conference.[S.l.:s.n]. 2018. |
[38] | BAUR C , ALBARQOUNI S , NAVAB N . MelanoGANs:high resolution skin lesion synthesis with GANs[J]. arXiv preprint,2018,arXiv:1804.04338, |
[39] | KORKINOF D , RIJKEN T,O’NEILL M ,et al. High-resolution mammogram synthesis using progressive generative adversarial networks[J]. arXiv preprint,2018,arXiv:1807.03401, |
[40] | KANG E , CHANG W , YOO J ,et al. Deep convolutional framelet denosing for lowdose CT via wavelet residual network[J]. IEEE Transactions on Medical Imaging, 2018,37(6): 1358-1369. |
[41] | WOLTERINK J M , LEINER T , VIERGEVER M A ,et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017,36(12): 2536-2545. |
[42] | BAHRAMI K , SHI F , ZONG X P ,et al. Reconstruction of 7T-like images from 3T MRI[J]. IEEE Transactions on Medical Imaging, 2016,35(9): 2085-2097. |
[43] | BAHRAMI K , REKIK I , SHI F ,et al. Joint reconstruction and segmentation of 7T-like MR images from 3T MRI based on cascaded convolutional neural networks[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.[S.l.:s.n]. 2017: 764-772. |
[44] | NIE D , CAO X H , GAO Y Z ,et al. Estimating CT image from MRI data using 3D fully convolutional networks[C]// Deep Learning and Data Labeling for Medical Applications. Cham:Springer, 2016: 170-178. |
[45] | NIE D , TRULLO R , PETITJEAN C ,et al. Medical image synthesis with context-aware generative adversarial networks[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.[S.l.:s.n]. 2017: 417-425. |
[46] | ISOLA P , ZHU J Y , ZHOU T ,et al. Image-to-image translation with conditional adversarial networks[C]// The IEEE Conference on Computer Vision and Pattern Recognition.[S.l.:s.n]. 2017: 1125-1134. |
[47] | ZHU J Y , PARK T , ISOLA P ,et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// The IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 2223-2232. |
[48] | MASPERO M , SAVENIJE M , DINKLA A M ,et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy[J]. Physics in Medicine & Biology, 2018,63(18):185001 |
[49] | CHOI H , LEE D S . Generation of structural MR images from amyloid PET:application to MR-less quantification[J]. Journal of Nuclear Medicine, 2018,59(7): 1111-1117. |
[50] | WOLTERINK J M , DINKLA A M , SAVENIJE M H F ,et al. Deep MR to CT synthesis using unpaired data[C]// International Workshop on Simulation and Synthesis in Medical Imaging. Cham:Springer, 2017: 14-23. |
[51] | CHARTSIAS A , JOYCE T , DHARMAKUMAR R ,et al. Adversarial image synthesis for unpaired multimodal cardiac data[C]// International Workshop on Simulation and Synthesis in Medical Imaging.[S.l.:s.n]. 2017: 3-13. |
[52] | ZHENG J M , CAO J W , WANG Z X ,et al. Semi-automatic synthetic computed tomography generation for abdomens using transfer learning and semisupervised classification[J]. Journal of Medical Imaging and Health Informatics, 2019,9(9): 1878-1886. |
[53] | JIN C B , JUNG W , JOO S ,et al. Deep CT to MR synthesis using paired and unpaired data[J]. Sensors, 2019,19(10):2361. |
[54] | HIASA Y , OTAKE Y , TAKAO M ,et al. Cross-modality image synthesis from unpaired data using CycleGAN[C]// International Workshop on Simulation and Synthesis in Medical Imaging.[S.l.:s.n]. 2018: 31-41. |
[55] | CHENG X , ZHANG L , ZHENG Y F . Deep similarity learning for multimodal medical images[J]. Computer Methods in Biomechanics and Biomedical Engineering:Imaging & Visualization, 2018,6(3): 248-252. |
[56] | SEDGHI A , LUO J , MEHRTASH A ,et al. Semi-supervised deep metrics for image registration[J]. arXiv preprint,2018,arXiv:1804.01565., |
[57] | SIMONOVSKY M , GUTIéRREZBECKER B , MATEUS D ,et al. A deep metric for multimodal registration[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.[S.l.:s.n]. 2016: 10-18. |
[58] | MIAO S , WANG Z J , ZHENG Y F ,et al. Real-time 2D/3D registration viaCNN regression[C]// 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Piscataway:IEEE Press, 2016: 1430-1434. |
[59] | MIAO S , WANG Z J , LIAO R . A CNN regression approach for real-time 2D/3D registration[J]. IEEE Transactions on Medical Imaging, 2016,35(5): 1352-1363. |
[60] | SALEHI S S M , KHAN S , ERDOGMUS D ,et al. Real-time deep pose estimation with geodesic loss for image-totemplate rigid registration[J]. IEEE Transactions on Medical Imaging, 2018,38(2): 470-481. |
[61] | ZHENG J N , MIAO S , WANG Z J ,et al. Pairwise domain adaptation module for CNN-based 2-D/3-D registration[J]. Journal of Medical Imaging, 2018,5(2):21204. |
[62] | YANG X , KWITT R , STYNER M ,et al. Quicksilver:fast predictive image registration–a deep learning approach[J]. Neuroimage, 2017,158: 378-396. |
[63] | HU Y P , GIBSON E , GHAVAMI N ,et al. Label-driven weakly-supervised learning for multimodal deformable image registration[C]// 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).[S.l.:s.n]. 2018: 1070-1074. |
[64] | HERING A , KUCKERTZ S , HELDMANN S ,et al. Enhancing label-driven deep deformable image registration with local distance metrics for state-ofthe-art cardiac motion tracking[M]// Bildverarbeitung für die Medizin 2019. Wiesbaden:Springer Vieweg, 2019: 309-314. |
[65] | CAO X H , YANG J H , WANG L ,et al. Deep learning based inter-modality image registration supervised by intramodality similarity[C]// International Workshop on Machine Learning in Medical Imaging. Cham:Springer, 2018: 55-63. |
[66] | FAN J F , CAO X H , YAP P T ,et al. BIRNet:brain image registration using dual-supervised fully convolutional networks[J]. Medical Image Analysis, 2019,54: 193-206. |
[67] | JADERBERG M , SIMONYAN K , ZISSERMAN A . Spatial transformer networks[C]// The 28th International Conference on Neural Information Processing Systems. New York:ACM Press, 2015: 2017-2025. |
[68] | YOO I , HILDEBRAND D G C , TOBIN W F ,et al. ssEMnet:serial-section electron microscopy image registration using a spatial transformer network with learned features[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham:Springer, 2017: 249-257. |
[69] | BALAKRISHNAN G , ZHAO A , SABUNCU M R ,et al. VoxelMorph:a learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019,38(8): 1788-1800. |
[70] | ZHAO A , BALAKRISHNAN G , DURAND F ,et al. Data augmentation using learned transformations for one-shot medical image segmentation[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 8543-8553. |
[71] | KUANG D , SCHMAH T . FAIM–a ConvNet method for unsupervised 3D medical image registration[M]// Machine Learning in Medical Imaging.[S.l.:s.n]. 2019: 646-654. |
[72] | ZHANG J . Inverse-consistent deep networks for unsupervised deformable image registration[J]. arXiv preprint,2018,arXiv1809.03443, |
[73] | TANG K , LI Z , TIAN L L ,et al. ADMIR–affine and deformable medical image registration for drug-addicted brain images[J]. IEEE Access, 2020,8: 70960-70968. |
[74] | YAN P K , XU S , RASTINEHAD A R ,et al. Adversarial image registration with application for MR and TRUS image fusion[C]// International Workshop on Machine Learning in Medical Imaging. Cham:Springer, 2018: 197-204. |
[75] | MAHAPATRA D , ANTONY B , SEDAI S ,et al. Deformable medical image registration using generative adversarial networks[C]// 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Piscataway:IEEE Press, 2018: 1449-1453. |
[76] | TANNER C , OZDEMIR F , PROFANTER R ,et al. Generative adversarial networks for MR-CT deformable image registration[J]. arXiv preprint,2018,arXiv:1807.07349, |
[77] | MOESKOPS P , WOLTERINK J M , VAN DER VELDEN B H M ,et al. Deep learning for multi-task medical image segmentation in multiple modalities[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2016: 478-486. |
[78] | LI X M , DOU Q , CHEN H ,et al. 3D multi-scale FCN with random modality voxel dropout learning for intervertebral disc localization and segmentation from multi-modality MR images[J]. Medical Image Analysis, 2018,45: 41-54. |
[79] | BI L , KIM J , KUMAR A ,et al. Stacked fully convolutional networks with multichannel learning:application to medical image segmentation[J]. The Visual Computer:International Journal of Computer Graphics, 2017,33(6-8): 1061-1071. |
[80] | ZHOU X Y , SHEN M , RIGA C ,et al. Focal FCN:towards small object segmentation with limited training data[J]. arXiv preprint,2017,arXiv:1711.01506, |
[81] | ZENG G D , ZHENG G Y . Multistream 3D FCN with multi-scale deep supervision for multi-modality isointense infant brain MR image segmentation[C]// 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Piscataway:IEEE Press, 2018: 136-140. |
[82] | POUDEL R P K , LAMATA P , MONTANA G . Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation[C]// Reconstruction,Segmentation,and Analysis of Medical Images. Cham:Springer, 2016: 83-94. |
[83] | ZHOU Z W , SIDDIQUEE M M R , TAJBAKHSH N ,et al. Unet++:a nested U-Net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham:Springer, 2018: 3-11. |
[84] | MILLETARI F , NAVAB N , AHMADI S A . V-Net:fully convolutional neural networks for volumetric medical image segmentation[C]// 2016 4th International Conference on 3D Vision(3DV). Piscataway:IEEE Press, 2016: 565-571. |
[85] | ALOM M Z , HASAN M , YAKOPCIC C ,et al. Recurrent residual convolutional neural network based on U-Net (R2UNet) for medical image segmentation[J]. arXiv preprint,2018,arXiv:1802.06955, |
[86] | XIE Y P , ZHANG Z Z , SAPKOTA M ,et al. Spatial clockwork recurrent neural network for muscle perimysium segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2016: 185-193. |
[87] | AZAD R , ASADI-AGHBOLAGHI M , FATHY M ,et al. Bi-directional ConvLSTM U-net with densley connected convolutions[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway:IEEE Press, 2019: 406-415. |
[88] | CHEN J X , YANG L , ZHANG Y Z ,et al. Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation[C]// Advances in Neural Information Processing Systems.[S.l.:s.n]. 2016: 3036-3044. |
[89] | XUE Y , XU T , ZHANG H ,et al. SegAN:adversarial network with multi-scale L1 loss for medical image segmentation[J]. Neuroinformatics, 2018,16(3-4): 383-392. |
[90] | SINGH V K , RASHWAN H A , ROMANI S ,et al. Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network[J]. Expert Systems with Applications, 2020,139:112855. |
[91] | ZHANG C Y , SONG Y , LIU S D ,et al. MSGAN:GAN-based semantic segmentation of multiple sclerosis lesions in brain magnetic resonance imaging[C]// 2018 Digital Image Computing:Techniques and Applications (DICTA). Piscataway:IEEE Press, 2018: 1-8. |
[92] | TAGHANAKI S A , ZHENG Y F , ZHOU S K ,et al. Combo loss:handling input and output imbalance in multi-organ segmentation[J]. Computerized Medical Imaging and Graphics, 2019,75: 24-33. |
[93] | 韩冬, 李其花, 蔡巍 ,等. 人工智能在医学影像中的研究与应用[J]. 大数据, 2019,5(1): 39-67. |
HAN D , LI Q H , CAI W ,et al. Research and application of artificial intelligence in medical imaging[J]. Big Data Research, 2019,5(1): 39-67. | |
[94] | SHANTHI T , SABEENIAN R S . Modified AlexNet architecture for classification of diabetic retinopathy images[J]. Computers& Electrical Engineering, 2019,76: 56-64. |
[95] | LI X C , SHEN L L , XIE X P ,et al. Multiresolution convolutional networks for chest X-ray radiograph based lung nodule detection[J]. Artificial Intelligence in Medicine, 2020,103:101744. |
[96] | MAHBOD A , SCHAEFER G , ELLINGER I ,et al. Fusing fine-tuned deep features for skin lesion classification[J]. Computerized Medical Imaging and Graphics, 2019,71: 19-29. |
[97] | CHRISTODOULIDIS S , ANTHIMOPOULOS M , EBNER L ,et al. Multisource transfer learning with convolutional neural networks for lung pattern analysis[J]. IEEE Journal of Biomedical and Health Informatics, 2016,21(1): 76-84. |
[98] | HARSONO I W , LIAWATIMENA S , CENGGORO T W . Lung nodule detection and classification from thorax CT-scan using RetinaNet with transfer learning[J]. Journal of King Saud UniversityComputer and Information Sciences,2020:Accepted, |
[99] | ALKHALEEFAH M , MA S C , CHANG Y L ,et al. Double-shot transfer learning for breast cancer classification from X-ray images[J]. Applied Sciences, 2020,10(11):3999. |
[100] | ABBAS A , ABDELSAMEA M M , GABER M M . Detrac:transfer learning of class decomposed medical images in convolutional neural networks[J]. IEEE Access, 2020,8: 74901-74913. |
[101] | OKSUZ I , RUIJSINK B , PUYOLANTóN E ,et al. Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning[J]. Medical Image Analysis, 2019,55: 136-147. |
[102] | GUAN Q J , HUANG Y P , ZHONG Z ,et al. Diagnose like a radiologist:attention guided convolutional neural network for thorax disease classification[J]. arXiv preprint,2018,arXiv:1801.09927.. |
[103] | GONZáLEZ-DíAZ I . Dermaknet:incorporating the knowledge of dermatologists to convolutional neural networks for skin lesion diagnosis[J]. IEEE Journal of Biomedical and Health Informatics, 2018,23(2): 547-559. |
[104] | LI L , XU M , WANG X F ,et al. Attention based glaucoma detection:a largescale database and CNN model[C]// The IEEE Conference on Computer Vision and Pattern Recognition.[S.l.:s.n]. 2019: 10571-10580. |
[105] | FANG L Y , WANG C , LI S T ,et al. Attention to lesion:Lesion-aware convolutional neural network for retinal optical coherence tomography image classification[J]. IEEE Transactions on Medical Imaging, 2019,38(8): 1959-1970. |
[106] | MITSUHARA M , FUKUI H , SAKASHITA Y ,et al. Embedding human knowledge in deep neural network via attention map[J]. arXiv preprint,2019,arXiv:1905.03540. |
[107] | MAJTNER T , YILDIRIM-YAYILGAN S , HARDEBERG J Y . Combining deep learning and hand-crafted features for skin lesion classification[C]// 2016 6th International Conference on Image Processing Theory,Tools and Applications. Piscataway:IEEE Press, 2016: 1-6. |
[108] | CHAI Y D , LIU H Y , XU J . Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models[J]. Knowledge-Based Systems, 2018,161: 147-156. |
[109] | XIE Y T , XIA Y , ZHANG J P ,et al. Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT[J]. IEEE Transactions on Medical Imaging, 2018,38(4): 991-1004. |
[110] | YAN K , WANG X S , LU L ,et al. DeepLesion:automated mining of large-scale lesion annotations and universal lesion detection with deep learning[J]. Journal of Medical Imaging, 2018,5(3):36501. |
[111] | XUE Z , JAEGER S , ANTANI S ,et al. Localizing tuberculosis in chest radiographs with deep learning[C]// Medical Imaging 2018:Imaging Informatics for Healthcare,Research,and Applications.[S.l.:s.n]. 2018. |
[112] | DING J , LI A X , HU Z Q ,et al. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks[C]// International Conference on Medical Image Computing and ComputerAssisted Intervention. Cham:Springer, 2017: 559-567. |
[113] | LIN T Y , GOYAL P , GIRSHICK R ,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,42(2): 318-327. |
[114] | LOTTER W , DIAB A R , HASLAM B ,et al. Robust breast cancer detection in mammography and digital breast tomosynthesis using annotationefficient deep learning approach[J]. arXiv preprint,2019,arXiv:1912.11027, |
[115] | MERCAN C , BALKENHOL M , VAN DER LAAK J ,et al. From point annotations to epithelial cell detection in breast cancer histopathology using RetinaNet[C]// International Conference on Medical Imaging with Deep Learning-Extended Abstract Track.[S.l.:s.n]. 2019. |
[116] | ZLOCHA M , DOU Q , GLOCKER B . Improving RetinaNet for CT lesion detection with dense masks from weak RECIST labels[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.[S.l.:s.n]. 2019: 402-410. |
[117] | SANTERAMO R , WITHEY S , MONTANA G . Longitudinal detection of radiological abnormalities with timemodulated LSTM[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham:Springer, 2018: 326-333. |
[118] | SU Y T , LU Y , CHEN M ,et al. Spatiotemporal joint mitosis detection using CNN-LSTM network in time-lapse phase contrast microscopy images[J]. IEEE Access, 2017,5: 18033-18041. |
[119] | GAO R Q , HUO Y K , BAO S X ,et al. Distanced LSTM:time-distanced gates in long short-term memory models for lung cancer detection[C]// International Workshop on Machine Learning in Medical Imaging.[S.l.:s.n]. 2019: 310-318. |
[120] | SHIN H C , ROTH H R , GAO M C ,et al. Deep convolutional neural networks for computer-aided detection:CNN architectures,dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016,35(5): 1285-1298. |
[121] | ZHANG R K , ZHENG Y L , MAK T W C ,et al. Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain[J]. IEEE Journal of Biomedical and Health Informatics, 2016,21(1): 41-47. |
[122] | JESSON A , GUIZARD N , GHALEHJEGH S H ,et al. CASED:curriculum adaptive sampling for extreme data imbalance[C]// International Conference on Medical Image Computing and ComputerAssisted Intervention. Cham:Springer, 2017: 639-646. |
[123] | LIU J Y , CAO L L , AKIN O ,et al. 3DFPNHS 2:3D feature pyramid network based high sensitivity and specificity pulmonary nodule detection[C]// Medical Image Computing and Computer Assisted Intervention-MICCAI 2019. Cham:Springer, 2019: 513-521. |
[1] | 王皓, 潘昱杉, 潘毅. 生成式人工智能大模型赋能的元宇宙生命体:前瞻和挑战[J]. 大数据, 2023, 9(3): 85-96. |
[2] | 邓钇敏, 张旭龙, 司世景, 王健宗, 肖京. 虚拟人形象合成技术综述[J]. 大数据, 2023, 9(3): 114-139. |
[3] | 李婧文, 李雅文. 算法应用风险与治理研究[J]. 大数据, 2023, 9(3): 140-149. |
[4] | 贺亚运, 彭俊清, 王健宗, 肖京. 节奏舞者:基于关键动作转换图和有条件姿态插值网络的3D舞蹈生成方法研究[J]. 大数据, 2023, 9(1): 23-37. |
[5] | 沈阳, 余梦珑. 元宇宙与大数据:时空智能中的数据洞察与价值连接[J]. 大数据, 2023, 9(1): 103-110. |
[6] | 崔雨萌, 王靖亚, 闫尚义, 陶知众. 基于深度学习的警情记录关键信息自动抽取[J]. 大数据, 2022, 8(6): 127-142. |
[7] | 朱智韬, 司世景, 王健宗, 肖京. 联邦推荐系统综述[J]. 大数据, 2022, 8(4): 105-132. |
[8] | 王杰, 张松岩, 梁吉业. 融合一致性正则与流形正则的半监督深度学习算法[J]. 大数据, 2022, 8(3): 103-114. |
[9] | 徐康庭, 宋威. 结合语言知识和深度学习的中文文本情感分析方法[J]. 大数据, 2022, 8(3): 115-127. |
[10] | 赵智韬, 赵理君, 张正, 唐娉. 基于容器云技术的典型遥感智能解译算法集成[J]. 大数据, 2022, 8(2): 58-74. |
[11] | 敖绍林, 秦永彬, 黄瑞章, 陈艳平, 刘丽娟, 郑庆华, 陈昌恒, 程少芬. 基于卷积神经网络的辅助分案方法研究[J]. 大数据, 2022, 8(2): 145-157. |
[12] | 孙倩, 秦永彬, 黄瑞章, 刘丽娟, 陈艳平. 结合案件要素序列的罪名预测方法[J]. 大数据, 2021, 7(6): 30-40. |
[13] | 张凯, 车漾. 基于分布式缓存加速容器化深度学习的优化方法[J]. 大数据, 2021, 7(5): 150-163. |
[14] | 温景熙, 于胡飞, 辛江, 唐艳. 基于深度学习的大脑性别差异分析[J]. 大数据, 2021, 7(4): 130-140. |
[15] | 彭鑫, 陈驰, 林云. 基于上下文的智能化代码复用推荐[J]. 大数据, 2021, 7(1): 37-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|