[1] |
HE K , ZHANG X , REN S , et al. Deep residuallearning for image recognition[C]// The IEEE Conference on Computer Vision and Pattern Recognition, June 26-July 1,2016,Las Vegas, USA.[S.l:s.n], 2016:770-778.
|
[2] |
RAJKOMAR A , OREN Es , CHEN K , et al. Scalable and accurate deep learning with electronic health records[J]. Digital Medicine, 2018,1(1): 18.
|
[3] |
BLUNSOM P , CHO K , DYER C , et al. From characters to understanding natural language (c2nlu): robust end-to-end deep learning for nlp (dagstuhl seminar17042)[R]. 2017.
|
[4] |
GHASSEMI M , PIMENTEL M A , NAUMANN T , et al. A multivariate time series modeling approach to severity of illness assessment and forecasting in icu with sparse, heterogeneous clinical data[C]// The AAAI Conference on Artificial Intelligence, January 25-30,2015,Austin, USA.Palo Alto:AAAI Press, 2015:446-453.
|
[5] |
NEIL D , PFEIFFER M , LIU S C . Phased LSTM: accelerating recurrent network training for long or event based sequences[C]// Neural Information Processing Systems 2016, December 5-10,2016,Barcelona, Spain.[S.l:s.n], 2016:3882-3890.
|
[6] |
JOHNSON A E , POLLARD T J , SHEN L , et al. Mimic-iii, a freely accessible critical care database[J]. Scientific Data, 2016(3): 160035.
|
[7] |
BARAJAS K L C , AKELLA R . Dynamicallymodeling patient's health state from electronic medical records: a time series approach[C]// The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 10-13,2015,Sydney, Australia.New York:ACM Press, 2015:69-78.
|
[8] |
ALAAA M , HU S , SCHAARM V D . Learning from clinical judgments: semi-markovmodulated marked hawkes processes for risk prognosis[J]. Computer Science, 2017arXiv:1705. 05267.
|
[9] |
LIU C , WANG F , HU J , et al. Temporal phenotyping from longitudinal electronic health records: a graph based framework[C]// The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 10-13,2015,Sydney, Australia.New York:ACM Press, 2015:705-714.
|
[10] |
HENRIKSSON A , ZHAO J , BOSTROM H , et al. Modeling electronic health records in ensembles of semantic spaces for adverse drug event detection[C]// 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), November 9-12,2015,Washington, DC, USA.Piscataway:IEEE Press, 2015.
|
[11] |
CHOI E , BAHADORI MT , SUN J , et al. Retain: an interpretable predictive modelfor healthcare using reverse time attention mechanism[C]// Neural Information Processing Systems 2016, December 5-10,2016,Barcelona, Spain.[S.l:s.n], 2016:3504-3512.
|
[12] |
NGUYEN P , TRAN T , WICKRAMASINGHE N , et al. Deepr: a convolutional net for medical records[J]. IEEE Journal of Biomedical and Health Informatics, 2017,21(1): 22-30.
|
[13] |
HOCHREITER S , BENGIO Y V , FRASCONI P , et al. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies[M]. Wiley: Wiley-IEEE Press, 2001.
|
[14] |
HOCHREITER S , SCHMIDHUBER J . Long short-termmemory[J]. Neural Computation, 1997,9(8): 1735-1780.
|
[15] |
KOUTNIK J , GREFF K V , GOMEZ F , et al. A clockwork RNN[C]// The 31st International Conference on International Conference on Machine Learning, June 21-26,2014,Beijing,China.[S.l:s.n]:JMLR.org, 2014:1863-1871.
|
[16] |
CAMPOS V , JOU B , GIR-I-NIETO X , et al. Skip RNN: learning to skip state updates in recurrent neural networks[C]// International Conference on Learning Representations, April 30-May 3,2018,Vancouver, Canada, 2018.
|
[17] |
BERGSTRA J , BREULEUX O , BASTIEN F , et al. Theano: aCPU and GPU math compiler in Python[C]// The 9th Python for Scientific Computing Conference, June 28-July 3,2010,Austin, USA.[S.l:s.n], 2010:1-7.
|
[18] |
KINGMA D , BA J . Adam: a method for stochastic optimization[J]. Computer Science, 2014arXiv:1412. 6980.
|
[19] |
TURPIN A , SCHOLERF . User performance versus precision measures for simple search tasks[C]// The 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, August 6-11,2006,Seattle, USA.New York:ACM Press, 2006:11-18.
|