大数据 ›› 2023, Vol. 9 ›› Issue (6): 160-173.doi: 10.11959/j.issn.2096-0271.2023077

• 应用 • 上一篇    下一篇

长短期记忆网络在虚拟电厂数据中心的应用

陈峻1, 宁思衡2   

  1. 1 上海时石能源有限公司,上海 201402
    2 中国科学院大学应急管理科学与工程学院,北京 100049
  • 出版日期:2023-11-15 发布日期:2023-11-01
  • 作者简介:陈峻(1972- ),男,毕业于清华大学电机工程与应用电子技术系,现就职于上海时石能源有限公司,主要从事数据中心领域的新型电力系统研究。
    宁思衡(1998- ),男,中国科学院大学应急管理科学与工程学院博士生,主要研究方向为深度学习。

Application of long short-term memory networks in virtual power plant data centers

Jun CHEN1, Siheng NING2   

  1. 1 Shanghai SS Energy Co., Ltd., Shanghai 201402, China
    2 School of Emergency Management Science and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2023-11-15 Published:2023-11-01

摘要:

可再生能源发电具有间歇性、随机性和不可控性,为绿色能源的充分利用带来了挑战。虚拟电厂数据中心具有高能耗特性,因此成为可再生能源中间歇性(非调度性)电力的高效吸纳与调控手段。基于此,提出了一种通过时间嵌词编码的长短期记忆(long short-term memory,LSTM)网络对虚拟电厂“源荷”双侧状态进行预测的方法。该方法可实现15分钟级的“电力短缺”主动预警,为容器的暂停和备份创造充分的缓冲时间窗口,结合容器技术实现数据中心的动态能耗管理,从而提升了虚拟电厂数据中心应对电力供需失衡的鲁棒性。这对稳定电网运行、加速绿色清洁能源应用、构建能源生态的服务格局、加速电网数字化转型具有重要的意义。

关键词: 虚拟电厂, 数据中心, 深度学习, 长短期记忆网络, 容器技术

Abstract:

The intermittent, random and uncontrollable power generation characteristics of renewable energy pose challenges for the full utilization of green energy.The high energy consumption feature of the virtual power plant data center makes it an efficient absorption and regulation strategy for the intermittent (non-dispatchable) power in renewable energy.This paper proposes a method to predict the "source-load" dual-state of the virtual power plant using a long short-term memory network that incorporates time-embedded encoding.The results indicate that using the model presented in this paper can achieve proactive alerts for "power shortages" at 15-minute intervals, creating ample buffer time windows for container suspension and backup.Combined with container technology, it realizes dynamic energy consumption management in data centers, thereby enhancing the robustness of the virtual power plant data center against power supply-demand imbalances.This technology is of great significance for stabilizing grid operations, accelerating the application of green clean energy, constructing a service pattern for the energy ecosystem and speeding up the digital transformation of the grid.

Key words: virtual power plant, data center, deep learning, long short-term memory network, container technology

中图分类号: 

No Suggested Reading articles found!