[1] |
ZHAO Z Y , LI M , LI C ,et al. Dietary preferences and diabetic risk in China:a large-scale nationwide internet data based study[J]. 2019
|
[2] |
高显俊, 黄儒乐 . 互联网数据在高校大数据平台中的应用研究[J]. 科技资讯, 2019,17(36): 12-13,15.
|
|
GAO X J , HUANG R L . Research on the application of internet data in big data platform of universities[J]. Science & Technology Information, 2019,17(36): 12-13,15.
|
[3] |
刘丹 . 基于信息贫困理论的青少年信息行为浅析[J]. 时代金融, 2020(3): 138-140.
|
|
LIU D . An analysis of youth information behavior based on information poverty theory[J]. Times Finance, 2020(3): 138-140.
|
[4] |
BILLE P . Fast searching in packed strings[J]. Journal of Discrete Algorithms, 2010,9(1).
|
[5] |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015,521(7553): 436-444.
|
[6] |
邹一心, 范海平 . 爬虫技术在WAP网站内容监测中的应用[J]. 电信科学, 2010,26(Z1): 164-166.
|
|
ZOU Y X , FAN H P . Application of reptile technology in content monitoring of WAP website[J]. Telecommunications Science, 2010,26(Z1): 164-166.
|
[7] |
GATOS B . A binary-tree-based OCR technique for machine-printed characters[J]. Engineering Applications of Artificial Intelligence, 1997,10(4).
|
[8] |
BALCáZAR J L , DíAZ R , GAVALDà R ,et al. The query complexity of learning DFA[J]. New Generation Computing, 1994,12(4): 337-358.
|
[9] |
山世光, 阚美娜, 刘昕 ,等. 深度学习:多层神经网络的复兴与变革[J]. 科技导报, 2016,34(14): 60-70.
|
|
SHAN S G , KAN M N , LIU X ,et al. Deep learning:the revival and transformation of multi layer neural networks[J]. Science &Technology Review, 2016,34(14): 60-70.
|
[10] |
汪少敏, 杨迪, 任华 . 基于深度学习的文本分类系统关键技术研究与模型验证[J]. 电信科学, 2018,34(12): 117-124.
|
|
WANG S M , YANG D , REN H . Key technology research and model validation of text classification system based on deep learning[J]. Telecommunications Science, 2018,34(12): 117-124.
|
[11] |
蔡鑫, 娄京生 . 基于LSTM深度学习模型的中国电信官方微博用户情绪分析[J]. 电信科学, 2017,33(12): 136-141.
|
|
CAI X , LOU J S . Sentiment analysis of telecom official micro-blog users based on LSTM deep learning model[J]. Telecommunications Science, 2017,33(12): 136-141.
|