[1] |
ERICSSON L . More than 50 billion connected devices[R]. 2011.
|
[2] |
HU R Q , QIAN Y , CHEN H H ,et al. Recent progress in machine-to-machine communications[Guest editorial][J]. IEEE Communications Magazine, 2011,49(4): 24-26.
|
[3] |
3GPP. Considerations and evaluation results for IMT-2020 for mMTC connection density:R1-1903968[S]. 2019.
|
[4] |
3GPP. IMT 2020 self evaluation:mMTC coverage,data rate,latency & battery life:R1-1905187[S]. 2019.
|
[5] |
WANG Z H , WONG V W S . Optimal access class barring for stationary machine type communication devices with timing advance information[J]. IEEE Transactions on Wireless Communications, 2015,14(10): 5374-5387.
|
[6] |
3GPP. Study on RAN improvements for machine-type communications:TR 37.868[S]. 2011.
|
[7] |
LIN T M , LEE C H , CHENG J P ,et al. PRADA:prioritized random access with dynamic access barring for MTC in 3GPP LTE-A networks[J]. IEEE Transactions on Vehicular Technology, 2014,63(5): 2467-2472.
|
[8] |
PRATAS N K , THOMSEN H , STEFANOVI? ? ,et al. Code-expanded random access for machine-type communications[C]// Proceedings of 2012 IEEE Globecom Workshops. Piscataway:IEEE Press, 2012: 1681-1686.
|
[9] |
VURAL S , WANG N , FOSTER G ,et al. Success probability of multiple-preamble-based single-attempt random access to mobile networks[J]. IEEE Communications Letters, 2017,21(8): 1755-1758.
|
[10] |
KIM T , JUNG B C , SUNG D K . An enhanced random access with distributed pilot orthogonalization for cellular IoT networks[J]. IEEE Transactions on Vehicular Technology, 2020,69(1): 1152-1156.
|
[11] |
KIM T , JUNG B C . An enhanced random access with inter-frame successive interference cancellation for stationary cellular IoT networks[J]. IEEE Wireless Communications Letters, 2020,9(5): 606-610.
|
[12] |
DING J , QU D M , JIANG H ,et al. Success probability of grant-free random access with massive MIMO[J]. IEEE Internet of Things Journal, 2019,6(1): 506-516.
|
[13] |
LIU L , YU W . Massive connectivity with massive MIMO—part I:device activity detection and channel estimation[J]. IEEE Transactions on Signal Processing, 2018,66(11): 2933-2946.
|
[14] |
SENEL K , LARSSON E G . Grant-free massive MTC-enabled massive MIMO:a compressive sensing approach[J]. IEEE Transactions on Communications, 2018,66(12): 6164-6175.
|
[15] |
DING Z G , SCHOBER R , FAN P Z ,et al. Simple semi-grant-free transmission strategies assisted by non-orthogonal multiple access[J]. IEEE Transactions on Communications, 2019,67(6): 4464-4478.
|
[16] |
TANG W W , KANG S L , REN B ,et al. Uplink grant-free pattern division multiple access (GF-PDMA) for 5G radio access[J]. China Communications, 2018,15(4): 153-163.
|
[17] |
YUAN Z F , YAN C L , YUAN Y F ,et al. Blind multiple user detection for grant-free MUSA without reference signal[C]// Proceedings of 2017 IEEE 86th Vehicular Technology Conference. Piscataway:IEEE Press, 2017: 1-5.
|
[18] |
POLYANSKIY Y , . A perspective on massive random-access[C]// Proceedings of 2017 IEEE International Symposium on Information Theory. Piscataway:IEEE Press, 2017: 2523-2527.
|
[19] |
3GPP. Evolved universal terrestrial radio access (E-UTRA);medium access control (MAC) protocol specification:TS 36.321[S]. 2009.
|
[20] |
3GPP. Technical specification group radio access network,NR,physical layer procedures:TS 36.213[S]. 2017.
|
[21] |
SESIA S , TOUFIK I , BAKER M . LTE - the UMTS long term evolution[M]. Hoboken: Wiley, 2011.
|
[22] |
3GPP. Spatial channel model for multiple input multiple output (MIMO) simulations (release 13):TR 25.996[S]. 2019.
|