电信科学 ›› 2022, Vol. 38 ›› Issue (10): 20-35.doi: 10.11959/j.issn.1000-0801.2022278
高子路1, 孙韶辉2,3, 李丽4
修回日期:
2022-10-10
出版日期:
2022-10-20
发布日期:
2022-10-01
作者简介:
高子路(1995- ),男,北京航空航天大学博士生,主要研究方向为大规模天线技术、智能超表面技术Zilu GAO1, Shaohui SUN2,3, Li LI4
Revised:
2022-10-10
Online:
2022-10-20
Published:
2022-10-01
摘要:
智能超表面(reconfigurable intelligent surface,RIS)技术是6G的潜在关键技术之一,具有低成本、低功耗和易部署等特点。通过智能地调控空间中的电磁波,RIS 可以辅助构建智能可控的无线电磁环境,从而为移动通信的发展提供一种新范式。首先,对 RIS 的基础原理、主要技术优势和应用场景进行了分析。其次,对RIS应用于通信传输中的信道估计、波束成形等关键技术进行了探讨,并给出了相关研究建议。最后,从硬件实现、算法设计和网络部署3个方面分析了目前RIS技术在实际应用中面临的主要挑战。
中图分类号:
高子路, 孙韶辉, 李丽. 面向新一代移动通信的智能超表面技术综述[J]. 电信科学, 2022, 38(10): 20-35.
Zilu GAO, Shaohui SUN, Li LI. Overview of reconfigurable intelligent surface for new-generation mobile communication[J]. Telecommunications Science, 2022, 38(10): 20-35.
[1] | 中国信息通信研究院. 国际电信联盟(ITU)启动6G研究工作[EB]. 2020. |
CAICT. International Telecommunication Union (ITU) launches 6G research work[EB]. 2020. | |
[2] | 广东省新一代通信与网络创新研究院, 清华大学, 北京邮电大学,等. 6G无线热点技术研究白皮书[R]. 2020. |
Guangdong Communications & Networks Institute, Tsinghua University, Beijing University of Posts & Telecommunications,et al. 6G wireless hotspot technology research white paper[R]. 2020. | |
[3] | IMT-2030推进组. IMT-2030(6G)推进组正式发布《6G总体愿景与潜在关键技术》白皮书[EB]. 2021. |
IMT-2030 (6G) Promotion Group. IMT-2030 (6G) Promotion Group officially released the white paper "6G overall vision and potential key technologies"[EB]. 2021. | |
[4] | CUI T J , QI M Q , WAN X ,et al. Coding metamaterials,digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014,3(10): 1-9. |
[5] | DI RENZO M , ZAPPONE A , DEBBAH M ,et al. Smart radio environments empowered by reconfigurable intelligent surfaces:how it works,state of research,and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020,38(11): 2450-2525. |
[6] | 马红兵, 张平, 杨帆 ,等. 智能超表面技术展望与思考[J]. 中兴通讯技术, 2022,28(3): 70-77. |
MA H B , ZHANG P , YANG F ,et al. Reflections on reconfigurable intelligent surface technology[J]. ZTE Technology Journal, 2022,28(3): 70-77. | |
[7] | 移动通信网. 中兴通讯、东南大学、中国联通联合承办第一届智能超表面技术论坛[EB]. 2021. |
MSCBSC.com. ZTE,Southeast University and China Unicom jointly organized the first Reconfigurable Intelligent Surfaces Technology Forum[EB]. 2021. | |
[8] | STDAILY. 智能超表面技术联盟在京成立[EB]. 2022. |
STDAILY. Reconfigurable intelligent surface technology alliance was established in Beijing[EB]. 2022. | |
[9] | 中国移动通信有限公司研究院. 中国移动联合崔铁军院士团队完成6G智能超表面技术试验[EB]. 2021. |
Research Institute of China Mobile Communications Co.,Ltd.. China Mobile cooperated with Academician Cui Tiejun's team to complete the 6G reconfigurable intelligent surface technology test[EB]. 2021. | |
[10] | C114通信网. 中兴通讯联合中国电信完成业界首个5G高频外场智能超表面技术验证测试[EB]. 2021. |
C114.com. ZTE and China Telecom completed the industry's first reconfigurable intelligent surface technology verification test in 5G high-frequency outfield[EB]. 2021. | |
[11] | DAI L L , WANG B C , WANG M ,et al. Reconfigurable intelligent surface-based wireless communications:antenna design,prototyping,and experimental results[J]. IEEE Access, 2020(8): 45913-45923. |
[12] | SRRC. NTT DoCoMo,Metawave test 5G mobile system in Tokyo[EB]. 2018. |
[13] | ARUN V , BALAKRISHNAN H . RFocus:practical beamforming for small devices[EB]. 2019. |
[14] | DUNNA M , ZHANG C , SIEVENPIPER D ,et al. ScatterMIMO:enabling virtual MIMO with smart surfaces[C]// Proceedings of the 26th Annual International Conference on Mobile Computing and Networking. New York:ACM Press, 2020. |
[15] | 梅中磊, 张黎, 崔铁军 . 电磁超材料研究进展[J]. 科技导报, 2016,34(18): 27-39. |
MEI Z L , ZHANG L , CUI T J . Recent advances on metamaterials[J]. Science & Technology Review, 2016,34(18): 27-39. | |
[16] | WU Q Q , ZHANG R . Towards smart and reconfigurable environment:intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020,58(1): 106-112. |
[17] | 周儒雅, 唐万恺, 李潇 ,等. 基于可重构智能表面的移动通信简要综述[J]. 移动通信, 2020,44(6): 63-69. |
ZHOU R Y , TANG W K , LI X ,et al. A brief survey of mobile communications through reconfigurable intelligent surfaces[J]. Mobile Communications, 2020,44(6): 63-69. | |
[18] | 程强, 戴俊彦, 柯俊臣 ,等. 智能超表面在波束及信息调控中的应用[J]. 电信科学, 2021,37(9): 30-37. |
CHENG Q , DAI J Y , KE J C ,et al. Application of reconfigurable intelligent surface in beamforming and information modulation[J]. Telecommunications Science, 2021,37(9): 30-37. | |
[19] | HEATH R W , GONZáLEZ-PRELCIC N , RANGAN S ,et al. An overview of signal processing techniques for millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016,10(3): 436-453. |
[20] | PEI X L , YIN H F , TAN L ,et al. RIS-aided wireless communications:prototyping,adaptive beamforming,and indoor/outdoor field trials[J]. IEEE Transactions on Communications, 2021,69(12): 8627-8640. |
[21] | TANG W K , CHEN M Z , DAI J Y ,et al. Wireless communications with programmable metasurface:new paradigms,opportunities,and challenges on transceiver design[J]. IEEE Wireless Communications, 2020,27(2): 180-187. |
[22] | WYMEERSCH H , HE J G , DENIS B ,et al. Radio localization and mapping with reconfigurable intelligent surfaces:challenges,opportunities,and research directions[J]. IEEE Vehicular Technology Magazine, 2020,15(4): 52-61. |
[23] | AI Y , DEFIGUEIREDO F A P , KONG L ,et al. Secure vehicular communications through reconfigurable intelligent surfaces[J]. IEEE Transactions on Vehicular Technology, 2021,70(7): 7272-7276. |
[24] | AL-HILO A , SAMIR M , ELHATTAB M ,et al. Reconfigurable intelligent surface enabled vehicular communication:joint user scheduling and passive beamforming[J]. IEEE Transactions on Vehicular Technology, 2022,71(3): 2333-2345. |
[25] | MAKARFI A U , RABIE K M , KAIWARTYA O ,et al. Physical layer security in vehicular networks with reconfigurable intelligent surfaces[C]// Proceedings of 2020 IEEE 91st Vehicular Technology Conference. Piscataway:IEEE Press, 2020: 1-6. |
[26] | LI S X , DUO B , YUAN X J ,et al. Reconfigurable intelligent surface assisted UAV communication:joint trajectory design and passive beamforming[J]. IEEE Wireless Communications Letters, 2020,9(5): 716-720. |
[27] | ZHANG Q Q , SAAD W , BENNIS M . Reflections in the sky:millimeter wave communication with UAV-carried intelligent reflectors[C]// Proceedings of 2019 IEEE Global Communications Conference. Piscataway:IEEE Press, 2019: 1-6. |
[28] | WU Q Q , GUAN X R , ZHANG R . Intelligent reflecting surface-aided wireless energy and information transmission:an overview[J]. Proceedings of the IEEE, 2022,110(1): 150-170. |
[29] | TANG W K , CHEN M Z , CHEN X Y ,et al. Wireless communications with reconfigurable intelligent surface:path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021,20(1): 421-439. |
[30] | ELLINGSON S W , . Path loss in reconfigurable intelligent surface-enabled channels[C]// Proceedings of 2021 IEEE 32nd Annual International Symposium on Personal,Indoor and Mobile Radio Communications. Piscataway:IEEE Press, 2021: 829-835. |
[31] | GRADONI G , DI RENZO M . End-to-end mutual coupling aware communication model for reconfigurable intelligent surfaces:an electromagnetic-compliant approach based on mutual impedances[J]. IEEE Wireless Communications Letters, 2021,10(5): 938-942. |
[32] | BJ?RNSON E , SANGUINETTI L . Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces[J]. IEEE Wireless Communications Letters, 2021,10(4): 830-834. |
[33] | 杨坤, 姜大洁, 秦飞 . 面向6G的智能表面技术综述[J]. 移动通信, 2020,44(6): 70-74,81. |
YANG K , JIANG D J , QIN F . Overview of the intelligent surface for 6G communications[J]. Mobile Communications, 2020,44(6): 70-74,81. | |
[34] | WANG Z R , LIU L , CUI S G . Channel estimation for intelligent reflecting surface assisted multiuser communications[C]// Proceedings of 2020 IEEE Wireless Communications and Networking Conference. Piscataway:IEEE Press, 2020: 1-6. |
[35] | WEI X H , SHEN D C , DAI L L . Channel estimation for RIS assisted wireless communications—part II:an improved solution based on double-structured sparsity[J]. IEEE Communications Letters, 2021,25(5): 1403-1407. |
[36] | ZHANG J M , QI C H , LI P ,et al. Channel estimation for reconfigurable intelligent surface aided massive MIMO system[C]// Proceedings of 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications. Piscataway:IEEE Press, 2020: 1-5. |
[37] | HE Z Q , YUAN X J . Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020,9(2): 210-214. |
[38] | HU C , DAI L L , HAN S F ,et al. Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications[J]. IEEE Transactions on Communications, 2021,69(11): 7736-7747. |
[39] | LIU S C , GAO Z , ZHANG J ,et al. Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces[J]. IEEE Transactions on Vehicular Technology, 2020,69(8): 9223-9228. |
[40] | DI B Y , ZHANG H L , SONG L Y ,et al. Hybrid beamforming for reconfigurable intelligent surface based multi-user communications:achievable rates with limited discrete phase shifts[J]. IEEE Journal on Selected Areas in Communications, 2020,38(8): 1809-1822. |
[41] | WANG P L , FANG J , DAI L L ,et al. Joint transceiver and large intelligent surface design for massive MIMO mmWave systems[J]. IEEE Transactions on Wireless Communications, 2021,20(2): 1052-1064. |
[42] | WU Q Q , ZHANG R . Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020,68(3): 1838-1851. |
[43] | FENG K M , CHEN Y J , HAN Y ,et al. Passive beamforming design for reconfigurable intelligent surface-aided OFDM:a fractional programming based approach[C]// Proceedings of 2021 IEEE 93rd Vehicular Technology Conference. Piscataway:IEEE Press, 2021: 1-6. |
[44] | GUO H Y , LIANG Y C , CHEN J ,et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2020,19(5): 3064-3076. |
[45] | HU S , RUSEK F , EDFORS O . Beyond massive MIMO:the potential of positioning with large intelligent surfaces[J]. IEEE Transactions on Signal Processing, 2018,66(7): 1761-1774. |
[46] | ZHANG H B , ZHANG H L , DI B Y ,et al. MetaLocalization:reconfigurable intelligent surface aided multi-user wireless indoor localization[J]. IEEE Transactions on Wireless Communications, 2021,20(12): 7743-7757. |
[47] | HE J G , WYMEERSCH H , SANGUANPUAK T ,et al. Adaptive beamforming design for mmWave RIS-aided joint localization and communication[C]// Proceedings of 2020 IEEE Wireless Communications and Networking Conference Workshops. Piscataway:IEEE Press, 2020: 1-6. |
[48] | DARDARI D , DECARLI N , GUERRA A ,et al. Localization in NLOS conditions using large reconfigurable intelligent surfaces[C]// Proceedings of 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications. Piscataway:IEEE Press, 2021: 551-555. |
[49] | ZHENG Y , BI S Z , ZHANG Y J ,et al. Intelligent reflecting surface enhanced user cooperation in wireless powered communication networks[J]. IEEE Wireless Communications Letters, 2020,9(6): 901-905. |
[50] | TANG Y Z , MA G G , XIE H L ,et al. Joint transmit and reflective beamforming design for IRS-assisted multiuser MISO SWIPT systems[C]// Proceedings of ICC 2020 - 2020 IEEE International Conference on Communications. Piscataway:IEEE Press, 2020: 1-6. |
[51] | WU Q Q , ZHANG R . Weighted sum power maximization for intelligent reflecting surface aided SWIPT[J]. IEEE Wireless Communications Letters, 2020,9(5): 586-590. |
[52] | TANG W K , DAI J Y , CHEN M Z ,et al. MIMO transmission through reconfigurable intelligent surface:system design,analysis,and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020,38(11): 2683-2699. |
[53] | ZHAO J , YANG X , DAI J Y ,et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019,6(2): 231-238. |
[54] | TANG W K , LI X , DAI J Y ,et al. Wireless communications with programmable metasurface:Transceiver design and experimental results[J]. China Communications, 2019,16(5): 46-61. |
[55] | TANG W K , DAI J Y , CHEN M Z ,et al. Programmable metasurface-based RF chain-free 8PSK wireless transmitter[J]. Electronics Letters, 2019,55(7): 417-420. |
[56] | CHEN M Z , TANG W K , DAI J Y ,et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface[J]. National Science Review, 2022,9(1): nwab134. |
[57] | CHEN X Y , KE J C , TANG W K ,et al. Design and implemenation of MIMO transmission based on dual-polarized reconfigurable intelligent surface[J]. IEEE Wireless Communications Letters, 2021,10(10): 2155-2159. |
[58] | 赵亚军, 菅梦楠 . 6G智能超表面技术应用与挑战[J]. 无线电通信技术, 2021,47(6): 679-691. |
ZHAO Y J , JIAN M N . Applications and challenges of reconfigurable intelligent surface for 6G networks[J]. Radio Communications Technology, 2021,47(6): 679-691. |
[1] | 王妍, 彭莹. 国际电信联盟(ITU)6G标准化研究[J]. 电信科学, 2023, 39(6): 129-138. |
[2] | 许文嘉, 王一旭, 彭木根. 卫星遥感与6G通信遥感一体化[J]. 电信科学, 2023, 39(4): 60-70. |
[3] | 卢敏, 秦泽豪, 陈志辉, 张敏, 乐光学. 基于1D-Concatenate的信道估计DNN模型优化方法[J]. 电信科学, 2023, 39(4): 71-86. |
[4] | 蒋瑞红, 冯一哲, 孙耀华, 郑海娜. 面向低轨卫星网络的组网关键技术综述[J]. 电信科学, 2023, 39(2): 37-47. |
[5] | 王晖, 邰其心, 刘镠, 王鸿, 宋荣方. 基于GSIC的上行链路毫米波大规模MIMO-NOMA系统低功耗传输方法[J]. 电信科学, 2023, 39(1): 51-59. |
[6] | 胡小玲, 于周源, 钱骁伟, 彭木根. 智能超表面系统的通信感知一体化:现状、设计与展望[J]. 电信科学, 2022, 38(9): 36-49. |
[7] | 索士强, 许盛浩, 曾婷, 龚秋莎, 王可. 面向6G的通感空口融合无线电接入网方案[J]. 电信科学, 2022, 38(9): 71-76. |
[8] | 陈仲华, 金凌, 孙剑平. 6G通信感知融合指标仿真方法研究[J]. 电信科学, 2022, 38(9): 77-82. |
[9] | 王晴天, 刘洋, 刘海涛, 宗佳颖, 杨峰义. 面向6G的网络智能化研究[J]. 电信科学, 2022, 38(9): 151-160. |
[10] | 张天魁, 徐瑜, 刘元玮, 杨鼎成, 任元红. 无人机辅助MEC系统:架构、关键技术与未来挑战[J]. 电信科学, 2022, 38(8): 3-16. |
[11] | 艾明, 侯云静, 周润泽, 蔡茂. 5G-Advanced网络的位置服务与关键技术[J]. 电信科学, 2022, 38(6): 120-130. |
[12] | 陆健贤, 黄济丘, 胡明星, 林衡华. 基于LTE测量报告的2.1 GHz和3.5 GHz 5G SA覆盖评估方法[J]. 电信科学, 2022, 38(6): 131-142. |
[13] | 徐溯, 张际, 刁杨华, 刘元莹, 张懿. 基于混合光电传输的无人机中继通信系统性能分析[J]. 电信科学, 2022, 38(4): 113-120. |
[14] | 段向阳, 杨立, 夏树强, 韩志强, 谢峰. 通感算智一体化技术发展模式[J]. 电信科学, 2022, 38(3): 37-48. |
[15] | 楼斌剑, 王海泉, 黄怡, 李紫薇, 俞芸芸. 毫米波信道中波束成形矢量的波束宽度[J]. 电信科学, 2022, 38(11): 47-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|