[1] |
叶艳艳 . 基于机器学习的电信用户流失预警模型预测与分析[D]. 济南:山东大学, 2021.
|
|
YE Y Y . Prediction and analysis of telecom customer churn warning model based on machine learning[D]. Jinan:Shandong University, 2021.
|
[2] |
钟保权 . 基于图学习的电信用户流失预测算法[D]. 杭州:浙江大学, 2021.
|
|
ZHONG B Q . Graph learning algorithm for telecom user churn prediction[D]. Hangzhou:Zhejiang University, 2021.
|
[3] |
乔健, 诸佳慧, 严康桓 . 基于随机森林 CART 特征选择改进算法的电信客户流失预测模型[J]. 电信工程技术与标准化, 2022,35(3): 78-82.
|
|
QIAO J , ZHU J H , YAN K H . Telecom customer churn prediction model based on improved random forest cart feature selection algorithm[J]. Telecom Engineering Technics and Standardization, 2022,35(3): 78-82.
|
[4] |
ZHANG T Y , MORO S , RAMOS R F . A data-driven approach to improve customer churn prediction based on telecom customer segmentation[J]. Future Internet, 2022,14(3): 94.
|
[5] |
JAIN H , KHUNTETA A , SRIVASTAVA S . Telecom churn prediction and used techniques,datasets and performance measures:a review[J]. Telecommunication Systems, 2021,76(4): 613-630.
|
[6] |
郑声晟, 殷海兵, 黄晓峰 ,等. 基于GAN的无监督域自适应行人重识别[J]. 电信科学, 2021,37(2): 99-106.
|
|
ZHENG S S , YIN H B , HUANG X F ,et al. GAN-based unsupervised domain adaptive person re-identification[J]. Telecommunication Science, 2021,37(2): 99-106.
|
[7] |
ERIA K , MARIKANNAN B P . Significance-based feature extraction for customer churn prediction data in the telecom sector[J]. Journal of Computational and Theoretical Nanoscience, 2019,16(8): 3428-3431.
|
[8] |
LIU H Z , ZHANG X , SHEN X W ,et al. A fair and efficient hybrid federated learning framework based on XGBoost for distributed power prediction[J]. arXiv preprint, 2022,arXiv:2201.02783.
|
[9] |
王愈轩, 梁沁雯, 章思远 ,等. 基于 LSTM-XGBoost 组合的超短期风电功率预测方法[J]. 科学技术与工程, 2022,22(14): 5629-5635.
|
|
WANG Y X , LIANG Q W , ZHANG S Y ,et al. An ultra-short-term wind power prediction method based on LSTM-XGBoost combination[J]. Science Technology and Engineering, 2022,22(14): 5629-5635.
|
[10] |
LIN M Y , ZHU X F , HUA T ,et al. Detection of ionospheric scintillation based on XGBoost model improved by SMOTE-ENN technique[J]. Remote Sensing, 2021,13(13): 2577.
|
[11] |
HAN H , WANG W Y , MAO B H . Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning[M]// Lecture Notes in Computer Science. Heidelberg: Springer, 2005: 878-887.
|
[12] |
张晨路 . 基于G-SMOTE 和Biased-SVM 的内部威胁用户检测[J]. 中北大学学报(自然科学版), 2022,43(2): 147-152.
|
|
ZHANG C L . User detection of insider threat detection based on G-SMOTE and biased-SVM[J]. Journal of North University of China (Natural Science Edition), 2022,43(2): 147-152.
|
[13] |
石洪波, 陈雨文, 陈鑫 . SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 2019,14(6): 1073-1083.
|
|
SHI H B , CHEN Y W , CHEN X . Summary of research on SMOTE oversampling and its improved algorithms[J]. CAAI Transactions on Intelligent Systems, 2019,14(6): 1073-1083.
|