[1] |
STOLCKE A , . SRILM - an extensible language modeling toolkit[C]// Proceedings of 7th International Conference on Spoken Language Processing (ICSLP 2002). ISCA:ISCA, 2002: 901-904.
|
[2] |
XIAO Y L , LIU L M , HUANG G P ,et al. BiTIIMT:a bilingual text-infilling method for interactive machine translation[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). Stroudsburg,PA,USA:Association for Computational Linguistics, 2022: 1958-1969.
|
[3] |
PARASKEVOPOULOS G , PARTHASARATHY S , KHARE A ,et al. Multimodal and multiresolution speech recognition with transformers[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA,USA:Association for Computational Linguistics, 2020: 2381-2387.
|
[4] |
DING Z X , XIA R , YU J F . End-to-end emotion-cause pair extraction based on sliding window multi-label learning[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg,PA,USA:Association for Computational Linguistics, 2020: 3574-3583.
|
[5] |
DING Z X , XIA R , YU J F . ECPE-2D:emotion-cause pair extraction based on joint two-dimensional representation,interaction and prediction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA,USA:Association for Computational Linguistics, 2020: 3161-3170.
|
[6] |
PANDEY P , BASU P , CHAKRABORTY K ,et al. GreenTPU:improving timing error resilience of a near-threshold tensor processing unit[C]// Proceedings of DAC '19:Proceedings of the 56th Annual Design Automation Conference.[S.l:s.n.],2019. 2019: 1-6.
|
[7] |
LIU X Y , CHEN X , WANG Y Q ,et al. Two efficient lattice rescoring methods using recurrent neural network language models[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing, 2016,24(8): 1438-1449.
|
[8] |
LEE K , PARK C , KIM N ,et al. Accelerating recurrent neural network language model based online speech recognition system[C]// Proceedings of 2018 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE Press, 2018: 5904-5908.
|
[9] |
CHEN X , LIU X Y , WANG Y Q ,et al. Efficient training and evaluation of recurrent neural network language models for automatic speech recognition[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing, 2016,24(11): 2146-2157.
|
[10] |
CHO K , VAN MERRIENBOER B , GULCEHRE C ,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg,PA,USA:Association for Computational Linguistics, 2014: 1724-1734.
|
[11] |
VASWANI A , SHAZEER N , PARMAR N ,et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017,22(7): 139-147.
|
[12] |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997,9(8): 1735-1780.
|
[13] |
CHEN Z , LEE K F . A new statistical approach to Chinese Pinyin input[C]// Proceedings of the 38th Annual Meeting on Association for Computational Linguistics - ACL '00. Morristown,NJ,USA:Association for Computational Linguistics, 2000: 241-247.
|
[14] |
YANG S , ZHAO H , LU B . A machine translation approach for Chinese whole-sentence Pinyin-to-character conversion[C]// Proceed ings of the 26th Pacific Asia Conference on Language,Information,and Computation.[S.l.:s.n.], 2012: 333-342.
|
[15] |
HUANG Y F , LI Z C , ZHANG Z S ,et al. Moon IME:neural-based Chinese pinyin aided input method with customizable association[C]// Proceedings of ACL 2018,System Demonstrations. Stroudsburg,PA,USA:Association for Computational Linguistics, 2018: 140-145.
|
[16] |
ZHANG Z S , HUANG Y F , ZHAO H . Open vocabulary learning for neural Chinese pinyin IME[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA,USA:Association for Computational Linguistics, 2019: 1584-1594.
|
[17] |
HUANG Y F , ZHAO H . Chinese pinyin aided IME,input what You have not keystroked yet[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA,USA:Association for Computational Linguistics, 2018: 2923-2929.
|
[18] |
TAN M H , DAI Y , TANG D Y ,et al. Exploring and adapting Chinese GPT to pinyin input method[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). Stroudsburg,PA,USA:Association for Computational Linguistics, 2022: 1899-1909.
|
[19] |
CHEN W L , GRANGIER D , AULI M . Strategies for training large vocabulary neural language models[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). Stroudsburg,PA,USA:Association for Computational Linguistics, 2016: 1975-1985.
|
[20] |
JOULIN A , CISSé M , GRANGIER D ,et al. Efficient softmax approximation for GPUs[C]// International Conference on Machine Learning.[S.l.:s.n.], 2017: 1302-1310.
|
[21] |
SHIM K , LEE M , CHOI I ,et al. SVD-softmax:Fast softmax approximation on large vocabulary neural networks[J]. Advances in Neural Information Processing Systems, 2017,30: 5463-5473.
|
[22] |
SHI Y Z , ZHANG W Q , LIU J ,et al. RNN language model with word clustering and class-based output layer[J]. EURASIP Journal on Audio,Speech,and Music Processing,2013, 2013:22.
|
[23] |
Zhang M J , Wang W H , Liu X D ,et al. Navigating with graph representations for fast and scalable decoding of neural language models[J]. Advances in Neural Information Processing Systems, 2018,31: 6308-6319.
|
[24] |
MI H T , WANG Z G , ITTYCHERIAH A . Vocabulary manipulation for neural machine translation[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2:Short Papers). Stroudsburg,PA,USA:Association for Computational Linguistics, 2016: 124-129.
|
[25] |
JEAN S , CHO K , MEMISEVIC R ,et al. On using very large target vocabulary for neural machine translation[C]// Proceed ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). Stroudsburg,PA,USA:Association for Computational Linguistics, 2015: 1-10.
|
[26] |
YAO J , SHU R , LI X ,et al. Enabling real-time neural IME with incremental vocabulary selection[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.[S.l.:s.n.], 2019: 1-8.
|
[27] |
MIKOLOV T , KARAFIáT M , BURGET L ,et al. Recurrent neural network based language model[C]// Proceedings of Interspeech 2010. ISCA:ISCA, 2010,2(3): 1045-1048.
|
[28] |
ELMAN J L . Finding structure in time[J]. Cognitive Science, 1990,14(2): 179-211.
|
[29] |
KNESER R , NEY H . Improved backing-off for M-gram language modeling[C]// Proceedings of 1995 International Conference on Acoustics,Speech,and Signal Processing. Piscataway:IEEE Press, 1995: 181-184.
|
[30] |
JAMES F . Modified kneser-ney smoothing of n-gram models[R]. Research Institute for Advanced Computer Science, 2000.
|
[31] |
PRESS O , WOLF L . Using the output embedding to improve language models[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics:Volume 2,Short Papers. Stroudsburg,PA,USA:Association for Computational Linguistics, 2017: 157-163.
|
[32] |
DEVLIN J , ZBIB R , HUANG Z Q ,et al. Fast and robust neural network joint models for statistical machine translation[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). Stroudsburg,PA,USA:Association for Computational Linguistics, 2014: 1370-1380.
|