[1] |
ZHANG J P , WANG F Y , WANG K F ,et al. Data-driven intelligent transportation systems:a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2011,12(4): 1624-1639.
|
[2] |
COLLINS R T , LIPTON A J , KANADE T . Introduction to the special section on video surveillance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8): 745-746.
|
[3] |
CHAROUH Z , EZZOUHRI A , GHOGHO M ,et al. A resource-efficient CNN-based method for moving vehicle detection[J]. Sensors, 2022,22(3): 1193.
|
[4] |
RANJITHKUMAR S , CHENTHUR PANDIAN S . Automatic license plate recognition system for vehicles using a CNN[J]. Computers,Materials & Continua, 2022,71(1): 35-50.
|
[5] |
SHI R W , YANG S C , CHEN Y Y ,et al. CNN-Transformer for visual-tactile fusion applied in road recognition of autonomous vehicles[J]. Pattern Recognition Letters, 2023,166: 200-208.
|
[6] |
SATYANARAYANA G S R , DESHMUKH P , DAS S K . Vehicle detection and classification with spatio-temporal information obtained from CNN[J]. Displays, 2022,75:102294.
|
[7] |
SOON F C , KHAW H Y , CHUAH J H ,et al. Hyper-parameters optimisation of deep CNN architecture for vehicle logo recognition[J]. IET Intelligent Transport Systems, 2018,12(8): 939-946.
|
[8] |
王上, 唐欢容 . 一种基于混合粒子群优化算法的深度卷积神经网络架构搜索方法[J]. 计算机应用研究, 2023,40(7): 2019-2024.
|
|
WANG S , TANG H R . Deep convolutional neural architecture search method based on hybrid particle swarm optimization algorithm[J]. Application Research of Computers, 2023,40(7): 2019-2024.
|
[9] |
KIYMA? E , KAYA Y . A novel automated CNN arrhythmia classifier with memory-enhanced artificial hummingbird algorithm[J]. Expert Systems With Applications, 2023(213): 119162.
|
[10] |
GHASEMI DAREHNAEI Z , SHOKOUHIFAR M , YAZDANJOUEI H ,et al. SI-EDTL:swarm intelligence ensemble deep transfer learning for multiple vehicle detection in UAV images[J]. Concurrency and Computation:Practice and Experience, 2022,34(5): e6726.
|
[11] |
MAITY M , BANERJEE S , SINHA CHAUDHURI S . Faster R-CNN and YOLO based vehicle detection:a survey[C]// Proceedings of 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). Piscataway:IEEE Press, 2021: 1442-1447.
|
[12] |
GHOSH R . On-road vehicle detection in varying weather conditions using Faster R-CNN with several region proposal networks[J]. Multimedia Tools and Applications, 2021,80(17): 25985-25999.
|
[13] |
HSU S C , HUANG C L , CHUANG C H . Vehicle detection using simplified Fast R-CNN[C]// Proceedings of 2018 International Workshop on Advanced Image Technology (IWAIT). Piscataway:IEEE Press, 2018: 1-3.
|
[14] |
宁俊, 王年, 朱明 . 基于改进Faster R-CNN的车辆类型识别算法[J]. 安徽大学学报(自然科学版), 2021,45(3): 26-33.
|
|
NING J , WANG N , ZHU M . Vehicle type recognition algorithm based on the improved Faster R-CNN[J]. Journal of Anhui University (Natural Sciences), 2021,45(3): 26-33.
|
[15] |
LUO J Q , FANG H S , SHAO F M ,et al. Multi-scale traffic vehicle detection based on Faster R-CNN with NAS optimization and feature enrichment[J]. Defence Technology, 2021,17(4): 1542-1554.
|
[16] |
LIU S , QI L , QIN H F ,et al. Path aggregation network for instance segmentation[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 8759-8768.
|
[17] |
GAO X , WANG J F , ZHOU M Z . The research of resource allocation method based on GCN-LSTM in 5G network[J]. IEEE Communications Letters, 2023,27(3): 926-930.
|
[18] |
ERKAN U , TOKTAS A , USTUN D . Hyperparameter optimization of deep CNN classifier for plant species identification using artificial bee colony algorithm[J]. Journal of Ambient Intelligence and Humanized Computing, 2023,14(7): 8827-8838.
|
[19] |
ZHANG X L , CUI J , LIU H J ,et al. Weed identification in soybean seedling stage based on optimized Faster R-CNN algorithm[J]. Agriculture, 2023,13(1): 175.
|
[20] |
DONG Z , WU Y W , PEI M T ,et al. Vehicle type classification using a semisupervised convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(4): 2247-2256.
|
[21] |
WEN L Y , DU D W , CAI Z W ,et al. UA-DETRAC:a new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020(193): 102907.
|