通信学报 ›› 2019, Vol. 40 ›› Issue (9): 193-206.doi: 10.11959/j.issn.1000-436x.2019137

• 学术通信 • 上一篇    

联合成对排序的物品推荐模型

吴宾,陈允,孙中川,叶阳东()   

  1. 郑州大学信息工程学院,河南 郑州 450001
  • 修回日期:2019-05-14 出版日期:2019-09-25 发布日期:2019-09-28
  • 作者简介:吴宾(1991- ),男,河南柘城人,郑州大学博士生,主要研究方向为推荐系统、社交网络及多媒体。|陈允(1990- ),女,河南虞城人,郑州大学硕士生,主要研究方向为推荐系统和社交网络。|孙中川(1992- ),男,河南原阳人,郑州大学硕士生,主要研究方向为推荐系统和对抗网络。|叶阳东(1962- ),男,河南潢川人,博士,郑州大学教授、博士生导师,主要研究方向为机器学习、智能系统、数据库等。
  • 基金资助:
    国家重点研发计划基金资助项目(2018YFB1201403);国家自然科学基金资助项目(61772475);国家自然科学基金资助项目(61502434)

Co-pairwise ranking model for item recommendation

Bin WU,Yun CHEN,Zhongchuan SUN,Yangdong YE()   

  1. School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China
  • Revised:2019-05-14 Online:2019-09-25 Published:2019-09-28
  • Supported by:
    The National Key Research and Development Program of China(2018YFB1201403);The National Natural Science Foundation of China(61772475);The National Natural Science Foundation of China(61502434)

摘要:

现有的推荐模型大多仅从用户角度进行建模,忽略了物品的功能关系对用户购买决策的影响。从用户和物品这2个角度,同时考虑用户-物品之间的交互关系和物品-物品之间的功能关系,提出了联合成对排序的推荐模型。考虑正样本的排名位置和负采样策略直接影响模型收敛速度,构建一种排序感知的学习算法,用于求解所提模型的参数。实验结果表明,与当前主流推荐算法相比,该算法在多个评价指标上具有明显的性能优势。

关键词: 物品推荐, 成对排序, 协同过滤, 隐式反馈, 矩阵分解

Abstract:

Most of existing recommendation models constructed pairwise samples only from a user’s perspective.Nevertheless,they overlooked the functional relationships among items--A key factor that could significantly influence user purchase decision-making process.To this end,a co-pairwise ranking model was proposed,which modeled a user’s preference for a given item as the combination of user-item interactions and item-item complementarity relationships.Considering that the rank position of positive sample and the negative sampler had a direct impact on the rate of convergence,a rank-aware learning algorithm was devised for optimizing the proposed model.Extensive experiments on four real-word datasets are conducted to evaluate of the proposed model.The experimental results demonstrate that the devised algorithm significantly outperforms a series of state-of-the-art recommendation algorithms in terms of multiple evaluation metrics.

Key words: item recommendation, pairwise ranking, collaborative filtering, implicit feedback, matrix factorization

中图分类号: 

No Suggested Reading articles found!