通信学报 ›› 2019, Vol. 40 ›› Issue (9): 193-206.doi: 10.11959/j.issn.1000-436x.2019137
• 学术通信 • 上一篇
修回日期:
2019-05-14
出版日期:
2019-09-25
发布日期:
2019-09-28
作者简介:
吴宾(1991- ),男,河南柘城人,郑州大学博士生,主要研究方向为推荐系统、社交网络及多媒体。|陈允(1990- ),女,河南虞城人,郑州大学硕士生,主要研究方向为推荐系统和社交网络。|孙中川(1992- ),男,河南原阳人,郑州大学硕士生,主要研究方向为推荐系统和对抗网络。|叶阳东(1962- ),男,河南潢川人,博士,郑州大学教授、博士生导师,主要研究方向为机器学习、智能系统、数据库等。
基金资助:
Bin WU,Yun CHEN,Zhongchuan SUN,Yangdong YE()
Revised:
2019-05-14
Online:
2019-09-25
Published:
2019-09-28
Supported by:
摘要:
现有的推荐模型大多仅从用户角度进行建模,忽略了物品的功能关系对用户购买决策的影响。从用户和物品这2个角度,同时考虑用户-物品之间的交互关系和物品-物品之间的功能关系,提出了联合成对排序的推荐模型。考虑正样本的排名位置和负采样策略直接影响模型收敛速度,构建一种排序感知的学习算法,用于求解所提模型的参数。实验结果表明,与当前主流推荐算法相比,该算法在多个评价指标上具有明显的性能优势。
中图分类号:
吴宾,陈允,孙中川,叶阳东. 联合成对排序的物品推荐模型[J]. 通信学报, 2019, 40(9): 193-206.
Bin WU,Yun CHEN,Zhongchuan SUN,Yangdong YE. Co-pairwise ranking model for item recommendation[J]. Journal on Communications, 2019, 40(9): 193-206.
表2
4个数据集的统计特性"
数据集 | 用户数量 | 物品数量 | 历史购买记录 | 交互关系稠密度 | 联合购买记录 | 互补关系稠密度 |
Health and Personal Care | 16 201 | 75 431 | 289 965 | 2.37×10-4 | 48 603 | 8.5×10-6 |
Video Games | 8 057 | 26 729 | 157 494 | 7.31×10-4 | 19 232 | 2.7×10-5 |
Pet Supplies | 7 417 | 33 798 | 117 385 | 4.68×10-4 | 22 980 | 2.0×10-5 |
Cell Phones and Accessories | 9 534 | 53 479 | 139 141 | 2.73×10-4 | 28 578 | 0.9×10-5 |
表3
在4个数据集上的实验结果"
数据集 | 算法 | d=50 | d=100 | |||||||
Precision | Recall | MAP | NDCG | Precision | Recall | MAP | NDCG | |||
Health and Personal Care | POP | 0.499 3 | 1.070 1 | 0.552 9 | 0.989 5 | 0.499 3 | 1.070 1 | 0.552 9 | 0.989 5 | |
BPR | 1.211 2 | 3.268 7 | 1.328 4 | 2.408 2 | 1.268 5 | 3.413 5 | 1.439 5 | 2.581 0 | ||
GBPR | 1.336 2 | 3.439 7 | 1.563 5 | 2.703 9 | 1.446 3 | 3.746 0 | 1.703 7 | 2.970 3 | ||
AOBPR | 1.428 8 | 3.736 1 | 1.629 0 | 2.888 2 | 1.533 7 | 3.993 4 | 1.818 9 | 3.157 1 | ||
WARP | 1.607 9 | 3.994 5 | 1.861 0 | 3.208 7 | 1.671 1 | 4.158 5 | 1.979 5 | 3.363 9 | ||
UPR | 1.282 8 | 3.512 7 | 1.427 2 | 2.583 0 | 1.366 2 | 3.836 7 | 1.609 6 | 2.877 8 | ||
APR | 1.591 0 | 4.407 3 | 1.948 2 | 3.399 4 | 1.723 2 | 4.798 7 | 2.148 7 | 3.730 2 | ||
CPR | 1.862 0 | 4.933 6 | 2.307 7 | 3.904 2 | 1.962 3 | 5.123 6 | 2.407 5 | 4.077 8 | ||
Video Games | POP | 0.587 7 | 1.599 8 | 0.608 7 | 1.171 3 | 0.587 7 | 1.599 8 | 0.608 7 | 1.171 3 | |
BPR | 2.445 6 | 6.649 6 | 2.594 6 | 4.859 8 | 2.479 5 | 6.626 0 | 2.575 9 | 4.879 4 | ||
GBPR | 3.337 2 | 9.106 0 | 3.881 0 | 6.898 2 | 3.522 4 | 9.614 0 | 4.164 6 | 7.357 5 | ||
AOBPR | 3.414 2 | 9.471 9 | 4.164 9 | 7.264 2 | 3.500 2 | 9.677 8 | 4.226 7 | 7.382 2 | ||
WARP | 3.532 8 | 9.743 5 | 4.202 7 | 7.399 3 | 3.581 0 | 10.02 6 | 4.355 2 | 7.622 2 | ||
UPR | 2.501 6 | 6.684 7 | 2.687 2 | 4.963 2 | 2.562 9 | 7.071 7 | 2.650 1 | 5.023 3 | ||
APR | 3.543 2 | 9.753 6 | 4.179 5 | 7.407 6 | 3.706 2 | 10.31 2 | 4.307 4 | 7.677 8 | ||
CPR | 3.737 5 | 10.44 0 | 4.579 5 | 7.994 6 | 3.909 5 | 11.01 3 | 4.795 3 | 8.330 6 | ||
Pet Supplies | POP | 0.670 2 | 1.979 4 | 0.652 3 | 1.352 3 | 0.670 2 | 1.979 4 | 0.652 3 | 1.352 3 | |
BPR | 1.647 1 | 4.862 7 | 1.836 2 | 3.485 7 | 1.678 6 | 4.954 6 | 1.862 1 | 3.531 7 | ||
GBPR | 1.732 9 | 5.069 4 | 2.040 9 | 3.756 5 | 1.925 7 | 5.648 3 | 2.298 8 | 4.214 0 | ||
AOBPR | 1.864 3 | 5.482 4 | 2.215 7 | 4.081 8 | 1.968 6 | 5.845 6 | 2.264 0 | 4.240 6 | ||
WARP | 1.971 4 | 5.847 8 | 2.388 0 | 4.345 3 | 1.992 9 | 5.822 2 | 2.453 5 | 4.437 9 | ||
UPR | 1.694 3 | 5.123 9 | 1.996 1 | 3.695 5 | 1.751 4 | 5.356 8 | 1.887 6 | 3.657 2 | ||
APR | 2.101 4 | 6.453 1 | 2.691 6 | 4.854 8 | 2.264 3 | 6.914 1 | 2.777 3 | 5.071 9 | ||
CPR | 2.232 9 | 6.778 9 | 2.856 6 | 5.111 9 | 2.360 0 | 7.101 6 | 2.972 2 | 5.325 7 | ||
Cell Phones and Accessories | POP | 0.312 7 | 0.969 5 | 0.360 6 | 0.688 5 | 0.312 7 | 0.969 5 | 0.360 6 | 0.688 5 | |
BPR | 1.194 9 | 4.093 2 | 1.600 0 | 2.845 2 | 1.296 9 | 4.406 8 | 1.771 8 | 3.111 4 | ||
GBPR | 1.211 7 | 4.070 2 | 1.780 2 | 3.010 7 | 1.376 5 | 4.576 3 | 2.001 2 | 3.392 9 | ||
AOBPR | 1.340 7 | 4.533 8 | 1.863 1 | 3.235 1 | 1.443 8 | 4.966 8 | 2.107 7 | 3.588 9 | ||
WARP | 1.462 8 | 4.942 2 | 2.186 1 | 3.653 2 | 1.498 7 | 5.042 7 | 2.154 5 | 3.658 5 | ||
UPR | 1.333 9 | 4.531 6 | 1.762 3 | 3.154 9 | 1.397 8 | 4.757 4 | 1.928 7 | 3.378 7 | ||
APR | 1.615 3 | 5.478 4 | 2.306 3 | 3.990 0 | 1.776 7 | 6.011 8 | 2.565 7 | 4.392 3 | ||
CPR | 1.780 1 | 5.968 9 | 2.495 9 | 4.307 3 | 1.811 5 | 6.091 7 | 2.714 6 | 4.543 0 |
表4
在4个数据集上各算法运行时长(时:分:秒)"
算法 | Health and Personal Care | Video Games | Pet Supplies | Cell Phones and Accessories |
BPR | 00:05:21 | 00:02:55 | 00:02:08 | 00:02:37 |
AOBPR | 04:06:06 | 00:47:30 | 00:48:36 | 01:32:36 |
WARP | 04:50:55 | 01:26:49 | 01:38:23 | 02:08:46 |
GBPR | 01:39:21 | 00:45:46 | 00:41:39 | 00:49:36 |
UPR | 00:06:18 | 00:04:11 | 00:03:16 | 00:03:42 |
APR | 05:18:46 | 00:56:17 | 00:58:19 | 01:46:41 |
CPR | 04:37:01 | 00:48:44 | 00:51:42 | 01:27:53 |
[1] | BOBADILLA J , ORTEGA F , HERNANDO A ,et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013(46): 109-132. |
[2] | LIU Q , CHEN E , XIONG H ,et al. Enhancing collaborative filtering by user interest expansion via personalized ranking[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics), 2012,42(1): 218-233. |
[3] | 何明, 刘伟世, 张江 . 支持推荐非空率的关联规则推荐算法[J]. 通信学报, 2017,38(10): 18-25. |
HE M , LIU S W , ZHANG J . Association rules recommendation algo-rithm supporting recommendation nonempty[J]. Journal on Commu-nications, 2017,38(10): 18-25. | |
[4] | SMITH B , LINDEN G . Two decades of recommender systems at amazoncom[J]. IEEE Internet Computing, 2017,21(3): 12-18. |
[5] | 吴宾, 娄铮铮, 叶阳东 . 联合正则化的矩阵分解推荐算法[J]. 软件学报, 2018,29(9): 2681-2696. |
WU B , LOU Z Z , YE Y D . Co-regularized matrix factorization rec-ommendation algorithm[J]. Journal of Software, 2018,29(9): 2681-2696. | |
[6] | ADOMAVICIUS G , TUZHILIN A . Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(16): 734-749. |
[7] | PAN W , CHEN L . GBPR:group preference based Bayesian personalized ranking for one-class collaborative filtering[C]// The International Joint Conference on Artificial Intelligence. AAAI Press, 2013: 2691-2697. |
[8] | HU Y , KOREN Y , VOLINSKY C . Collaborative filtering for implicit feedback datasets[C]// The Eighth IEEE International Conference on Data Mining. IEEE, 2008: 263-272. |
[9] | HE X , ZHANG H , KAN M Y ,et al. Fast matrix factorization for online recommendation with implicit feedback[C]// The International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2016: 549-558. |
[10] | RENDLE S , FREUDENTHALER C , GANTNER Z ,et al. BPR:Bayesian personalized ranking from implicit feedback[C]// The Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2009: 452-461. |
[11] | DING J , FENG F , HE X ,et al. An improved sampler for Bayesian personalized ranking by leveraging view data[C]// Companion Proceedings of the Web Conference 2018. ACM, 2018: 13-14. |
[12] | SUN Z , WU B , WU Y ,et al. APL:adversarial pairwise learning for recommender systems[J]. Expert Systems with Applications, 2019(118): 573-584. |
[13] | ZHAO T , MCAULEY J , KING I . Leveraging social connections to improve personalized ranking for collaborative filtering[C]// The ACM International Conference on Conference on Information and Knowledge Management. ACM, 2014: 261-270. |
[14] | LERCHE L , JANNACH D . Using graded implicit feedback for Bayesian personalized ranking[C]// The ACM Conference on Recommender Systems. ACM, 2014: 353-356. |
[15] | PARK Y J , TUZHILIN A . The long tail of recommender systems and how to leverage it[C]// The 2008 ACM Conference on Recommender Systems. ACM, 2008: 11-18. |
[16] | RENDLE S , FREUDENTHALER C . Improving pairwise learning for item recommendation from implicit feedback[C]// The ACM International Conference on Web Search and Data Mining. ACM, 2014: 273-282. |
[17] | HE X , LIAO L , ZHANG H ,et al. Neural collaborative filtering[C]// The International Conference on World Wide Web. ACM, 2017: 173-182. |
[18] | CHEN X , WANG P , QIN Z ,et al. HLBPR:a hybrid local Bayesian personal ranking method[C]// The International Conference Companion on World Wide Web. ACM, 2016: 21-22. |
[19] | MCAULEY J , PANDEY R , LESKOVEC J . Inferring networks of substitutable and complementary products[C]// The ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015: 785-794. |
[20] | WANG Z , JIANG Z , REN Z ,et al. A path-constrained framework for discriminating substitutable and complementary products in e-commerce[C]// The ACM International Conference on Web Search and Data Mining. ACM, 2018: 619-627. |
[21] | OTUNBA R , RUFAI R A , LIN J . MPR:multi-objective pairwise ranking[C]// The ACM Conference on Recommender Systems. ACM, 2017: 170-178. |
[22] | WESTON J , BENGIO S , USUNIER N . WSABIE:scaling up to large vocabulary image annotation[C]// The International Joint Conference on Artificial Intelligence. AAAI Press, 2011: 2764-2770. |
[23] | HE R , MCAULEY J . VBPR:visual Bayesian personalized ranking from implicit feedback[C]// The AAAI Conference on Artificial Intelligence. AAAI Press, 2016: 144-150. |
[24] | WU B , YE Y , CHEN Y . Visual appearance or functional complementarity:which aspect affects your decision making?[J]. Information Sciences, 2019(476): 19-37. |
[25] | 彭舰, 王屯屯, 陈瑜 ,等. 基于跨平台的在线社交网络用户推荐研究[J]. 通信学报, 2018,39(3): 147-158. |
PENG J , WANG T T , CHEN Y ,et al. User recommendation based on cross-platform online social networks[J]. Journal on Communications, 2018,39(3): 147-158. | |
[26] | 朱敬华, 明骞 . LBSN 中融合信任与不信任关系的兴趣点推荐[J]. 通信学报, 2018,39(7): 157-165. |
ZHU J H , MING Q . POI recommendation by incorporating trust-distrust relationship in LBSN[J]. Journal on Communications, 2018,39(7): 157-165. | |
[27] | 孙光福, 吴乐, 刘淇 ,等. 基于时序行为的协同过滤推荐算法[J]. 软件学报, 2013,24(11): 2721-2733. |
SUN G F , WU L , LIU Q ,et al. Recommendations based on collabora-tive filtering by exploiting sequential behaviors[J]. Journal of Software, 2013,24(11): 2721-2733. |
[1] | 解元, 邹涛, 孙为军, 谢胜利. 面向高混响环境的欠定卷积盲源分离算法[J]. 通信学报, 2023, 44(2): 82-93. |
[2] | 李骜, 冯聪, 牛宇童, 徐士彪, 张英涛, 孙广路. 面向视角非对齐数据的多视角聚类方法[J]. 通信学报, 2022, 43(7): 143-152. |
[3] | 邱飞岳,陈博文,陈铁明,章国道. 稀疏诱导流形正则化凸非负矩阵分解算法[J]. 通信学报, 2020, 41(5): 84-95. |
[4] | 任永功,张云鹏,张志鹏. 基于粗糙集规则提取的协同过滤推荐算法[J]. 通信学报, 2020, 41(1): 76-83. |
[5] | 朱敬华,明骞. LBSN中融合信任与不信任关系的兴趣点推荐[J]. 通信学报, 2018, 39(7): 157-165. |
[6] | 纪祥敏,赵波,刘金会,贾建卫,张焕国,向騻. 基于对称矩阵分解的无线传感网密钥恢复攻击[J]. 通信学报, 2018, 39(10): 87-96. |
[7] | 常振超,陈鸿昶,黄瑞阳,于洪涛,刘阳. 基于非负矩阵分解的半监督动态社团检测[J]. 通信学报, 2016, 37(2): 132-143. |
[8] | 于淼,杨武,王巍,申国伟. 面向微博的多实体稀疏关系数据联合聚类[J]. 通信学报, 2016, 37(1): 151-159. |
[9] | 吴毅涛,张兴明,王兴茂,李晗. 基于用户模糊相似度的协同过滤算法[J]. 通信学报, 2016, 37(1): 199-207. |
[10] | 荣辉桂1,火生旭1,胡春华2,莫进侠1. 基于用户相似度的协同过滤推荐算法[J]. 通信学报, 2014, 35(2): 3-24. |
[11] | 荣辉桂,火生旭,胡春华,莫进侠. 基于用户相似度的协同过滤推荐算法[J]. 通信学报, 2014, 35(2): 16-24. |
[12] | 魏祥麟,陈鸣,张国敏,黄建军. NMF-NAD:基于NMF的全网络流量异常检测方法[J]. 通信学报, 2012, 33(4): 54-61. |
[13] | 龚卫华,杨良怀,金蓉,丁维龙. 基于主题的用户兴趣域算法[J]. 通信学报, 2011, 32(1): 72-78. |
[14] | 熊庆旭,冯金鑫. 基于矩阵分解的光交换机分组调度算法[J]. 通信学报, 2006, 27(4): 80-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|