通信学报 ›› 2021, Vol. 42 ›› Issue (7): 137-149.doi: 10.11959/j.issn.1000-436x.2021083

• 学术论文 • 上一篇    下一篇

基于深度图嵌入的无人机自组网链路预测

舒坚1, 王启宁1, 刘琳岚2   

  1. 1 南昌航空大学软件学院,江西 南昌 330063
    2 南昌航空大学信息工程学院,江西 南昌 330063
  • 修回日期:2020-12-01 出版日期:2021-07-25 发布日期:2021-07-01
  • 作者简介:舒坚(1964− ),男,江西南昌人,南昌航空大学教授、硕士生导师,主要研究方向为分布式系统、软件工程等
    王启宁(1996− ),男,河北石家庄人,南昌航空大学硕士生,主要研究方向为分布式系统
    刘琳岚(1968− ),女,湖南东安人,南昌航空大学教授、硕士生导师,主要研究方向为无线传感器网络、分布式系统等
  • 基金资助:
    国家自然科学基金资助项目(62062050);国家自然科学基金资助项目(61762065);国家自然科学基金资助项目(61962037);江西省自然科学基金资助项目(20202BABL202039);江西省研究生创新专项资金资助项目(YC2019-S355)

UAV ad hoc network link prediction based on deep graph embedding

Jian SHU1, Qining WANG1, Linlan LIU2   

  1. 1 School of Software, Nanchang Hangkong University, Nanchang 330063, China
    2 School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China
  • Revised:2020-12-01 Online:2021-07-25 Published:2021-07-01
  • Supported by:
    The National Natural Science Foundation of China(62062050);The National Natural Science Foundation of China(61762065);The National Natural Science Foundation of China(61962037);The Natural Science Foundation of Jiangxi Province(20202BABL202039);The Innovation Foundation for Postgraduate Student of Jiangxi Province(YC2019-S355)

摘要:

针对无人机自组网的拓扑时变、节点移动、间歇性连接等特点,提出用时序化图嵌入模型对预处理后的无人机自组网进行表征,基于线性概率计算采样间隔以提高采样效率,将网络结构特征映射为节点间关系,并采用对抗训练提取节点上下文语义特征。利用长短期记忆网络提取无人机自组网的时序特征,预测下一时刻的网络连接情况。采用AUC、MAP、Error Rate作为评价指标。Ns-3仿真实验表明,与Node2vec、DDNE、E-LSTM-D等方法相比,所提方法具有更高的预测准确率。

关键词: 无人机自组网, 图嵌入, 链路预测, 长短期记忆网络

Abstract:

Aiming at the characteristics of the UAV ad hoc network (UAANET), such as topological temporal-varying, node mobility and intermittent connection, a temporal graph embedding model was proposed to present the preprocessed UAANET.To improve the sampling efficiency, the sampling interval was calculated based on linear probability.The network structure features were mapped to the relationship between nodes, and the contextual semantic features of nodes were extracted by adversarial training.With the help of long and short-term memory network, the temporal characteristics of the UAANET were extracted to predict the connection at the next moment.AUC, MAP, and Error Rate were employed as evaluation indexes.The simulation experiments based on NS-3 show that compared with Node2vec, DDNE and E-LSTM-D, the proposed method has a better accuracy.

Key words: UAV ad hoc network, graph embedding, link prediction, long short-term memory network

中图分类号: 

No Suggested Reading articles found!