通信学报 ›› 2020, Vol. 41 ›› Issue (12): 21-35.doi: 10.11959/j.issn.1000-436X.2020223
顾秋阳1,2,3, 琚春华4, 吴功兴4
修回日期:
2020-09-05
出版日期:
2020-12-25
发布日期:
2020-12-01
作者简介:
顾秋阳(1995- ),男,浙江杭州人,浙江工业大学博士生,主要研究方向为智能信息处理、数据挖掘、中小企业高质量发展等。基金资助:
Qiuyang GU1,2,3, Chunhua JU4, Gongxing WU4
Revised:
2020-09-05
Online:
2020-12-25
Published:
2020-12-01
Supported by:
摘要:
基于改进蚁群优化算法与子图演化,提出了一种新型非监督社交网络链路预测(SE-ACO)方法。该方法首先在社交网络图中确定特殊子图;然后研究子图演化以预测图中的新链接,并用蚁群优化算法定位特殊子图;最后针对所提方法使用不同网络拓扑环境与数据集进行检验。结果表明,与其他无监督社交网络预测算法相比,所提SE-ACO方法在多数数据集上的评估结果较好,且运行时间较短,这表明图形结构在链路预测算法中起重要作用。
中图分类号:
顾秋阳, 琚春华, 吴功兴. 基于子图演化与改进蚁群优化算法的社交网络链路预测方法[J]. 通信学报, 2020, 41(12): 21-35.
Qiuyang GU, Chunhua JU, Gongxing WU. Social network link prediction method based on subgraph evolution and improved ant colony optimization algorithm[J]. Journal on Communications, 2020, 41(12): 21-35.
表1
各数据集在时刻t的统计信息"
数据集 | 节点个数/个 | 边数/边 | 平均聚类系数 | 密度 | 同配性系数 | SCC中的节点个数/个 | SCC中的节点边数/边 | 估计直径 | SCC | 平均节点出度 |
新浪微博 | 37 864 | 593 832 | 67.40% | 3.40% | 54.90% | 28 994 | 487 732 | 32 | 241 | 8.47 |
49 822 | 709 223 | 59.10% | 3.80% | 38.10% | 42 542 | 684 483 | 24 | 127 | 6.44 | |
38 942 | 493 801 | 72.40% | 1.70% | 39.40% | 29 475 | 387 492 | 26 | 110 | 5.64 | |
hep-ph | 15 393 | 239 840 | 54.80% | 0.40% | 63.70% | 13 874 | 203 342 | 14 | 173 | 9.83 |
astro-ph | 19 831 | 493 208 | 65.00% | 0.30% | 49.20% | 13 220 | 467 743 | 16 | 236 | 7.28 |
dblp-collab | 389 403 | 2 783 964 | 59.40% | 0.10% | 39.10% | 278 331 | 2 344 900 | 27 | 8 943 | 9.44 |
dblp-cite | 26 495 | 398 504 | 14.30% | 1.20% | -1.70% | 11 048 | 284 931 | 8 | 5 639 | 8.28 |
polblogs | 2 448 | 48 754 | 17.40% | 2.40% | -3.50% | 1227 | 35 622 | 6 | 374 | 12.09 |
patent-colla | 609 444 | 5 890 483 | 60.40% | 0.10% | 27.10% | 287 366 | 2 473 816 | 47 | 39 849 | 8.89 |
表2
各数据集在时刻t+1的统计信息"
数据集 | 加权(yes/no) | 控制(yes/no) | 节点个数/个 | 边数/边 | 节点增加数/个 | 边增加数/边 | 平均聚类系数 | 密度 | 同配性 系数 | SCC中的节点个数/个 | SCC中的节点边数/边 | 估计直径 | SCC | 平均节点出度 |
新浪微博 | no | no | 42 093 | 617 898 | 4 229 | 24 066 | 68.30% | 4.10% | 52.70% | 29 864 | 509 483 | 31 | 487 | 10.78 |
no | no | 55 891 | 790 937 | 6 069 | 81 714 | 60.50% | 4.70% | 39.10% | 43 880 | 728 839 | 21 | 268 | 9.89 | |
no | no | 42 965 | 528 908 | 4 023 | 35 107 | 71.10% | 1.60% | 38.70% | 31 285 | 459 833 | 24 | 139 | 7.84 | |
hep-ph | no | no | 17 833 | 268 337 | 2 440 | 28 497 | 55.20% | 0.50% | 65.70% | 14 087 | 220 983 | 13 | 340 | 13.09 |
astro-ph | no | no | 20 931 | 509 838 | 1 100 | 16 630 | 63.00% | 0.20% | 50.40% | 16 908 | 567 480 | 15 | 309 | 9.89 |
dblp-collab | yes | no | 390 084 | 2 980 456 | 681 | 196 492 | 59.20% | 0.10% | 40.90% | 289 844 | 3 192 086 | 25 | 4 059 | 14.58 |
dblp-cite | yes | yes | 27 709 | 409 836 | 1 214 | 11 332 | 15.20% | 1.00% | -2.00% | 16 094 | 310 929 | 7 | 6 784 | 10.35 |
polblogs | no | yes | 2 694 | 51 297 | 246 | 2 543 | 24.50% | 2.60% | -4.60% | 2 094 | 43 957 | 5 | 509 | 11.98 |
patent-colla | yes | no | 687 943 | 5 984 760 | 78 499 | 94 277 | 62.20% | 0.10% | 23.60% | 309 821 | 3 587 939 | 42 | 40 939 | 16.83 |
表4
几种算法在数据集的精度对比"
算法 | 新浪微博 | hep-ph | astro-ph | dblp-collab | dblp-cite | polblogs | patent-colla | ||
随机预测器精度 | 57.84% | 69.42% | 56.92% | 24.81% | 49.02% | 3.71% | 5.89% | 37.84% | 7.38% |
CN | 46.73% | 57.28% | 43.81% | 31.90% | 48.91% | 3.81% | 3.94% | 39.82% | 4.83% |
AA | 54.28% | 64.90% | 48.94% | 49.39% | 39.30% | 12.21% | 6.44% | 48.39% | 12.93% |
JC | 59.39% | 68.38% | 59.10% | 38.18% | 42.89% | 4.93% | 4.92% | 43.82% | 4.83% |
PA | 48.30% | 54.89% | 52.78% | 39.28% | 42.19% | 4.37% | 5.84% | 43.92% | 3.20% |
Katz | 30.34% | 43.99% | 58.94% | 21.03% | 43.90% | 5.49% | 4.83% | 22.07% | 0.28% |
Distance | 56.59% | 54.89% | 64.90% | 58.39% | 46.37% | 27.83% | 4.83% | 40.91% | 3.35% |
RP | 68.59% | 64.72% | 69.28% | 43.89% | 54.19% | 5.44% | 5.91% | 58.42% | 0.43% |
SR | 55.84% | 44.83% | 58.49% | 56.92% | 34.90% | 12.83% | 6.45% | 44.90% | 20.34% |
PF | 34.23% | 54.30% | 53.91% | 41.02% | 23.81% | 7.38% | 5.48% | 42.31% | 11.23% |
RA | 53.25% | 43.90% | 57.84% | 37.26% | 17.83% | 8.65% | 9.43% | 35.08% | 3.34% |
SE-ACO | |||||||||
注:加粗的数字表示针对某数据集精度最高的算法。 |
表5
SE-ACO算法的Top-n与其他算法的精度比较情况"
算法 | 新浪微博 | hep-ph | astro-ph | dblp-collab | dblp-cite | polblogs | patent-colla | ||
CN | 36.73 | 168.93 | 73.91 | 26.89 | 17.83 | 4 693 | 284.03 | 68.48 | 4737 |
AA | 29.89 | 193.78 | 50.84 | 18.04 | 13.29 | 4 791 | 419.02 | 56.03 | 4290 |
JC | 38.91 | 122.9 | 68.05 | 23.91 | 19.24 | 3 980 | 382.99 | 64.83 | 4379 |
PA | 24.73 | 96.09 | 49.55 | 21.64 | 17.83 | 3 678 | 376.91 | 61.2 | 4728 |
Katz | 19.04 | 152.66 | 56.04 | 27.9 | 26.04 | 4 017 | 392.04 | 65.09 | 4910 |
Distance | 10.87 | 103.94 | 47.82 | 24.5 | 18.75 | 3 913 | 386.91 | 63.48 | 4289 |
RP | 27.98 | 84.07 | 54.17 | 28.99 | 23.89 | 4 692 | 428.94 | 78.93 | — |
SR | 24.01 | 79.3 | 48.91 | 25.63 | 17.32 | — | 217.03 | 47.16 | — |
PF | 31.07 | 105.87 | 68.93 | 27.57 | 20.88 | 4 903 | 472.04 | 73.98 | 5382 |
RA | 34.97 | 107.41 | 70.66 | 29.17 | 21.94 | 5 038 | 480.94 | 75.26 | 5490 |
SE-ACO | 162.98 | 25.46 | 72.63 | ||||||
注:加粗的数字表示针对某数据集精度最高的算法。 |
表6
基于ROC曲线下面积的不同算法比较"
算法 | 新浪微博 | hep-ph | astro-ph | dblp-collab | dblp-cite | polblogs | patent-colla | ||
CN | 57.83% | 51.83% | 58.37% | 59.02% | 52.91% | 59.33% | 63.89% | 67.33% | 58.31% |
AA | 57.31% | 58.94% | 52.09% | 56.38% | 58.44% | 53.83% | 62.91% | 63.40% | 68.37% |
JC | 59.75% | 57.21% | 52.98% | 56.12% | 52.89% | 51.92% | 69.23% | 63.71% | 58.19% |
PA | 58.38% | 50.76% | 50.38% | 59.83% | 64.92% | 50.33% | 58.92% | 59.43% | 58.93% |
Katz | 58.49% | 52.93% | 51.82% | 62.98% | 60.42% | 61.24% | 61.20% | 70.26% | 69.04% |
Distance | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% |
RP | 62.83% | 57.29% | 39.40% | 53.72% | 58.93% | 60.22% | 64.95% | 67.29% | — |
SR | 58.03% | 61.89% | 49.38% | 60.41% | 53.78% | — | 68.94% | 70.32% | — |
PF | 53.82% | 60.44% | 48.39% | 53.24% | 48.91% | 52.31% | 57.43% | 67.93% | 61.22% |
RA | 61.05% | 48.92% | 42.94% | 54.10% | 58.93% | 61.84% | 60.11% | 59.35% | 54.89% |
SE-ACO | 60.28% | 60.32% | 62.39% | ||||||
注:加粗的数字表示针对某数据集精度最高的算法。 |
表7
基于精确率-召回率曲线下面积的不同算法比较"
算法 | 新浪微博 | hep-ph | astro-ph | dblp-collab | dblp-cite | polblogs | patent-colla | ||
CN | 3.28% | 7.81% | 3.66% | 0.83% | 2.89% | 1.62% | 5.74% | 5.71% | 1.74% |
AA | 4.49% | 4.10% | 4.07% | 1.56% | 1.63% | 2.18% | 4.23% | 6.18% | 2.38% |
JC | 2.71% | 5.89% | 2.90% | 0.94% | 1.78% | 1.37% | 3.84% | 5.41% | 2.91% |
PA | 1.93% | 4.90% | 6.85% | 1.72% | 4.83% | 2.71% | 4.12% | 2.37% | 3.72% |
Katz | 2.31% | 3.72% | 8.57% | 2.17% | 1.29% | 1.63% | 5.33% | 3.92% | 2.81% |
Distance | 1.52% | 1.87% | 4.95% | 0.73% | 0.74% | 2.65% | 4.81% | 4.36% | 0.84% |
RP | 3.93% | 4.38% | 7.83% | 0.65% | 1.58% | 3.28% | 4.73% | 4.01% | — |
SR | 4.25% | 3.99% | 9.12% | 1.22% | 2.34% | — | 4.10% | 7.41% | — |
PF | 2.84% | 5.84% | 8.49% | 0.93% | 2.45% | 2.81% | 4.61% | 5.26% | 0.73% |
RA | 0.83% | 3.42% | 39.28% | 0.34% | 2.04% | 4.09% | 5.19% | 4.31% | 1.27% |
SE-ACO | 7.15% | 4.49% | 7.34% | ||||||
注:加粗的数字表示针对某数据集精度最高的算法。 |
[28] | LI D , SHEN D R , KOU Y ,et al. Research on a link-prediction method based on a hierarchical hybrid-feature graph[J]. Science in Chi-na(Information Sciences), 2020,50(2): 221-238. |
[29] | 方哲, 游宏梁, 薛非 ,等. 专家知识协作加权超网络模型及其超链路预测研究[J]. 科研管理, 2017,38(S1): 259-266. |
FANG Z , YOU H L , XUE F ,et al. Research on expert knowledge collaboration weighted super network model and hyperlink predic-tion[J]. Science Research Management, 2017,38(S1): 259-266. | |
[30] | 尚凤军, 龚文娟, 耿哲 . 基于链路预测和网络编码的MAC机制[J]. 通信学报, 2016,37(1): 17-27. |
SHANG F F , GONG W J , GENG Z . MAC mechanism based on link prediction and network coding[J]. Journal on Communications, 2016,37(1): 17-27. | |
[31] | HUANG Z . Link prediction based on graph topology:the predictive value of generalized clustering coefficient[J]. SSRN Electronic Journal, 2010: 1634014. |
[32] | 黄璐, 朱一鹤, 张嶷 . 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019,38(4): 335-341. |
HUANG L , ZHU Y H , ZHANG Y . Research on identification of emerging topics based on link prediction with weighted networks[J]. Journal of the China Society for Scientific and Technical Information, 2019,38(4): 335-341. | |
[33] | LATAPY M . Main-memory triangle computations for very large (sparse (power-law)) graphs[J]. Theoretical Computer Science, 2008,407(1): 458-473. |
[34] | TSOURAKAKIS C E , DRINEAS P , MICHELAKIS E ,et al. Spectral counting of triangles via element-wise sparsification and triangle-based link recommendation[J]. Social Network Analysis and Mining, 2011,1(2): 75-81. |
[35] | 刘树新, 李星, 陈鸿昶 ,等. 基于资源传输匹配度的复杂网络链路预测方法[J]. 通信学报, 2020,41(6): 70-79. |
LIU S X , LI X , CHEN H C ,et al. Link prediction method based on matching degree of resource transmission for complex network[J]. Journal on Communications, 2020,41(6): 70-79. | |
[1] | 李永立, 罗鹏, 张书瑞 . 基于决策分析的社交网络链路预测方法[J]. 管理科学学报, 2017,20(1): 64-74. |
LI Y L , LUO P , ZHANG S R . Link prediction in social networks based on decision analysis[J]. Journal of Management Sciences in China, 2017,20(1): 64-74. | |
[36] | NEWMAN M E J . Clustering and preferential attachment in growing networks[J]. Physical Review E:Statistical Nonlinear and Soft Matter Physics, 2001,64(2): 25102. |
[37] | WU B , WU G , YANG M . A MapReduce based ant colony optimization approach to combinatorial optimization problems[C]// Proceedings of the 2012 8th International Conference on Natural Computation. Piscataway:IEEE Press, 2012: 728-732. |
[2] | WANG Z , LIANG J , LI R . A fusion probability matrix factorization framework for link prediction[J]. Knowledge-Based Systems, 2018,159: 72-85. |
[3] | LIBEN-NOWELL D , KLEINBERG J . The link-prediction problem for social networks[J]. Journal of the American Society for Information Science, 2007,58(7): 1019-1031. |
[38] | DEAN J , GHEMAWAT S . MapReduce:simplified data processing on large clusters[J]. Communications of the ACM, 2008,51(1): 107-113. |
[39] | NEWMAN M E J . Assortative mixing in networks[J]. Physical Review Letters, 2002,89(20): 208701. |
[4] | 王智强, 梁吉业, 李茹 . 基于信息融合的概率矩阵分解链路预测方法[J]. 计算机研究与发展, 2019,56(2): 306-318. |
WANG Z Q , LIANG J Y , LI R . Probability matrix factorization for link prediction based on information fusion[J]. Journal of Computer Research and Development, 2019,56(2): 306-318. | |
[40] | LICHTENWALTER R N , CHAWLA N V . Lpmade:link prediction made easy[J]. The Journal of Machine Learning Research, 2011,12: 2489-2492. |
[41] | ADAMIC L A , GLANCE N . The political blogosphere and the 2004 U.S.election:divided they blog[C]// Proceedings of the 3rd International Workshop on Link Discovery. Chicago:Association for Computing Machinery, 2005: 36-43. |
[5] | HUANG Z , LIN D K J . The time-series link prediction problem with applications in communication surveillance[J]. Informs Journal on Computing, 2008,21(2): 286-303. |
[6] | YIN D , HONG L , DAVISON B D . Structural link analysis and prediction in microblogs[C]// Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York:ACM Press, 2011: 1163-1168. |
[42] | LESKOVEC J , KLEINBERG J , FALOUTSOS C . Graphs over time:densification laws,shrinking diameters and possible explanations[C]// Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York:ACM Press, 2005: 177-187. |
[43] | KATZ L . A new status index derived from sociometric analysis[J]. Psychometrika, 1953,18(1): 39-43. |
[7] | PECH R , HAO D , LEE Y L ,et al. Link prediction via linear optimization[J]. Physica A:Statistical Mechanics and Its Applications, 2019,528: 121319. |
[8] | JACCARD P . étude comparative de la distribution florale dans une portion des Alpes et des Jura[J]. Bull Soc Vaudoise Sci Nat, 1901,37: 547-579. |
[44] | BRIN S , PAGE L . The anatomy of a large-scale hypertextual Web search engine[J]. Computer Networks, 1998,30: 107-117. |
[45] | JEH G , WIDOM J . SimRank:a measure of structural-context similarity[C]// Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2002: 538-543. |
[9] | HU H , ZHU C , AI H ,et al. LPI-ETSLP:lncRNA-protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction[J]. Molecular Biosystems, 2017,13(9): 1781-1787. |
[10] | 王守辉, 于洪涛, 黄瑞阳 ,等. 基于模体演化的时序链路预测方法[J]. 自动化学报, 2016,42(5): 735-745. |
[46] | LICHTENWALTER R N , LUSSIER J T , CHAWLA N V . New perspectives and methods in link prediction[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2010: 243-252. |
[47] | 李勇军, 尹超, 于会 ,等. 基于最大熵模型的微博传播网络中的链路预测[J]. 物理学报, 2016,65(2): 31-41. |
[10] | WANG S H , YU H T , HUANG R Y ,et al. Time series link prediction method based on phantom evolution[J]. Acta Automatica Sinica, 2016,42(5): 735-745. |
[11] | GAO H , HUANG J B , CHENG Q ,et al. Link prediction based on linear dynamical response[J]. Physica A:Statistical Mechanics and Its Applications, 2019,527: 121397 |
[47] | LI Y C , YIN C , YU H ,et al. Link prediction in microblog retweet network based on maximum entropy model[J]. Acta Physica Sinica, 2016,65(2): 31-41. |
[48] | 翟东升, 刘鹤, 张杰 ,等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016,35(10): 1090-1100. |
[12] | WU J H , SHEN J , ZHOU B ,et al. General link prediction with influential node identification[J]. Physica A:Statistical Mechanics and its Applications, 2019,523: 996-1007. |
[13] | 王凯, 李星, 兰巨龙 ,等. 一种基于资源传输路径拓扑有效性的链路预测方法[J]. 电子与信息学报, 2020,42(3): 653-660. |
[48] | ZHAI D S , LIU H , ZHANG J ,et al. Approach to mining technology opportunity based on link prediction[J]. Journal of the China Society for Scientific and Technical Information, 2016,35(10): 1090-1100. |
[49] | HAND D J . Measuring classifier performance:a coherent alternative to the area under the ROC curve[J]. Machine Learning, 2009,77(1): 103-123. |
[13] | WANG K , LI X , LAN J L ,et al. A new link prediction method for complex networks based on topological effectiveness of resource transmission paths[J]. Journal of Electronics & Information Technolo-gy, 2020,42(3): 653-660. |
[14] | 舒坚, 张学佩, 刘琳岚 ,等. 基于深度卷积神经网络的多节点之间链路预测方法[J]. 电子学报, 2018,46(12): 2970-2977. |
[50] | DAVIS J , GOADRICH M . The relationship between precision-recall and ROC curves[C]// Proceedings of the 23rd International Conference on Machine Learning. New York:ACM Press, 2006: 233-240. |
[51] | 肖婧, 张永建, 许小可 . 复杂网络模糊重叠社区检测研究进展[J]. 复杂系统与复杂性科学, 2017,14(3): 8-29. |
[14] | SHU J , ZHANG X P , LIU L L ,et al. Multi-nodes link prediction method based on deep convolution neural networks[J]. Acta Electro-nica Sinica, 2018,46(12): 2970-2977. |
[15] | DORIGO M , BLUM C . Ant colony optimization theory:a survey[J]. Theoretical Computer Science, 2005,344(2-3): 243-278. |
[16] | FADAEE S A , AMIR H M . Classification using link prediction[J]. Neurocomputing, 2019,359: 395-407. |
[17] | LICHTENWALTER R N , CHAWLA N V . Vertex collocation profiles:subgraph counting for link analysis and prediction[C]// Proceedings of the 21st International Conference on World Wide Web. New York:ACM Press, 2012: 1019-1028. |
[18] | 张子柯 . 在线社交网络信息传播机制与动力学研究综述[J]. 情报学报, 2017,36(4): 422-431. |
ZHANG Z K . Mechanisms and dynamics of information spreading on online social networks:a state-of-the-art survey[J]. Journal of the China Society for Scientific and Technical Information, 2017,36(4): 422-431. | |
[19] | ZHANG Q M , LYU L , WANG W Q ,et al. Potential theory for directed networks[J]. PLos One, 2013,8(2): e55437. |
[20] | 胡文斌, 王欢, 严丽平 ,等. 混合指标量子群智能社会网络事件检测方法[J]. 软件学报, 2016,27(11): 2747-2762. |
[51] | XIAO J , ZHANG Y J , XU X K . Research progress of fuzzy overlap-ping community detection in complex networks[J]. Complex Systems and Complexity Science, 2017,14(3): 8-29. |
[52] | 叶小莺, 万梅, 唐蓉 ,等. 基于图聚类与蚁群优化算法的社交网络聚类算法[J]. 计算机应用研究, 2020,37(6): 1670-1674,1687. |
[20] | HU W B , WANG H , YAN L P ,et al. Hybrid quantum swarm intelli-gence indexing for event detection in social networks[J]. Journal of Software, 2016,27(11): 2747-2762. |
[21] | 郭丽媛, 王智强, 梁吉业 . 基于边重要度的矩阵分解链路预测算法[J]. 模式识别与人工智能, 2018,31(2): 150-157. |
GUO L Y , WANG Z Q , LIANG J Y . Link prediction algorithm by matrix factorization based on importance of edges[J]. Pattern Recogni-tion and Artificial Intelligence, 2018,31(2): 150-157. | |
[22] | GONG N Z , TALWALKAR A , MACKEY L ,et al. Joint link prediction and attribute inference using a social-attribute network[J]. ACM Transactions on Intelligent Systems and Technology, 2014,5(2): Article 27. |
[23] | GORI M , MONFARDINI G , SCARSELLI F . A new model for learning in graph domains[C]// Proceedings of the 2005 IEEE International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2005: 729-734. |
[24] | BRONSTEIN M M , BRUNA J , LECUN Y ,et al. Geometric deep learning:going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017,34(4): 18-42. |
[25] | 白铂, 刘玉婷, 马驰骋 ,等. 图神经网络[J]. 中国科学:数学, 2020,(3): 367-384. |
BAI B , LIU Y T , MA C P ,et al. Graph neural network[J]. Scientia Sinica (Mathematica), 2020,(3): 367-384. | |
[26] | FAN W Q , MA Y , LI Q ,et al. Graph neural networks for social recommendation[C]// The World Wide Web Conference.New York:ACM Press. 2019: 417-426. |
[27] | 郭嘉琰, 李荣华, 张岩 ,等. 基于图神经网络的动态网络异常检测算法[J]. 软件学报, 2020,31(3): 748-762. |
GUO J Y , LI R H , ZHANG Y ,et al. Graph neural network based ano-maly detection in dynamic networks[J]. Journal of Software, 2020,31(3): 748-762. | |
[28] | 李冬, 申德荣, 寇月 ,等. 基于层次化混合特征图的链路预测方法[J]. 中国科学(信息科学), 2020,50(2): 221-238. |
[52] | YE X Y , WAN M , TANG R ,et al. Clustering algorithm of social net-work based on graph clustering and ant colony optimization algo-rithm[J]. Application Research of Computers, 2020,37(6): 1670-1674,1687. |
[1] | 王璿, 张瑜, 周军锋, 陈子阳. 基于社交网络的影响力最大化算法[J]. 通信学报, 2022, 43(8): 151-163. |
[2] | 彭滔, 钟文韬, 王国军, 罗恩韬, 熊金波, 刘忆宁, Hao Wang. 移动社交网络中面向隐私保护的精确好友匹配[J]. 通信学报, 2022, 43(11): 90-103. |
[3] | 顾秋阳, 吴宝, 池仁勇. 基于高阶路径相似度的复杂网络链路预测方法[J]. 通信学报, 2021, 42(7): 61-69. |
[4] | 舒坚, 王启宁, 刘琳岚. 基于深度图嵌入的无人机自组网链路预测[J]. 通信学报, 2021, 42(7): 137-149. |
[5] | 何元智, 彭聪, 于季弘, 刘韵. 面向密集多波束组网的卫星通信系统资源调度算法[J]. 通信学报, 2021, 42(4): 109-118. |
[6] | 吴翼腾,于洪涛,黄瑞阳,李华巍. 采用组合方法进行链路预测的理论极限研究[J]. 通信学报, 2020, 41(6): 34-50. |
[7] | 刘树新,李星,陈鸿昶,王凯. 基于资源传输匹配度的复杂网络链路预测方法[J]. 通信学报, 2020, 41(6): 70-79. |
[8] | 卢毅,徐梦颖,周杰. 基于改进的免疫克隆蛙跳算法的多约束QoS路由优化研究[J]. 通信学报, 2020, 41(5): 141-149. |
[9] | 刘真,王娜娜,王晓东,孙永奇. 位置社交网络中谱嵌入增强的兴趣点推荐算法[J]. 通信学报, 2020, 41(3): 197-206. |
[10] | 陈晶,祁子怡. 基于时序关系的社交网络影响最大化算法研究[J]. 通信学报, 2020, 41(10): 211-221. |
[11] | 毕俊蕾,李致远. 机会社交网络中基于时变兴趣社区的查询消息路由算法[J]. 通信学报, 2019, 40(9): 86-94. |
[12] | 李凤华,孙哲,牛犇,曹进,李晖. 跨社交网络的隐私图片分享框架[J]. 通信学报, 2019, 40(7): 1-13. |
[13] | 黄海平,王凯,汤雄,张东军. 基于边介数模型的差分隐私保护方案[J]. 通信学报, 2019, 40(5): 88-97. |
[14] | 王晓萌, 方滨兴, 张宏莉, 王星. TSL:基于连接强度的Facebook消息流行度预测模型[J]. 通信学报, 2019, 40(10): 1-9. |
[15] | 闫光辉, 张萌, 罗浩, 李世魁, 刘婷. 融合高阶信息的社交网络重要节点识别算法[J]. 通信学报, 2019, 40(10): 109-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|