通信学报 ›› 2022, Vol. 43 ›› Issue (4): 60-70.doi: 10.11959/j.issn.1000-436x.2022067

• 专题:多模态网络环境关键技术 • 上一篇    下一篇

面向软件定义多模态车联网的双时间尺度RAN切片资源分配

亓伟敬, 宋清洋, 郭磊   

  1. 重庆邮电大学通信与信息工程学院智能通信与网络安全研究院,重庆 400065
  • 修回日期:2022-02-21 出版日期:2022-04-25 发布日期:2022-04-01
  • 作者简介:亓伟敬(1991- ),女,山东济南人,博士,重庆邮电大学讲师,主要研究方向为车联网、边缘计算、资源分配等
    宋清洋(1976- ),女,河北唐山人,博士,重庆邮电大学教授、博士生导师,主要研究方向为协作资源管理、无线携能通信、边缘计算、移动缓存等
    郭磊(1980- ),男,四川眉山人,博士,重庆邮电大学教授、博士生导师,主要研究方向为光通信网络、无线通信网络
  • 基金资助:
    国家杰出青年科学基金资助项目(62025105);重庆市自然科学基金资助项目(cstc2020jcyj-msxmX0918)

Dual time scale resource allocation for RAN slicing in software-defined oriented polymorphic IoV

Weijing QI, Qingyang SONG, Lei GUO   

  1. Institute of Intelligent Communication and Network Security, School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Revised:2022-02-21 Online:2022-04-25 Published:2022-04-01
  • Supported by:
    The National Science Fund for Distinguished Young Scholars(62025105);The Chongqing Natural Science Foundation(cstc2020jcyj-msxmX0918)

摘要:

为了有效满足不同车载应用的差异化服务质量需求,针对软件定义多模态车联网提出了一种双时间尺度的无线接入网切片资源分配算法。考虑增强型移动宽带切片用户最小速率约束、车到车链路可靠性约束、节点最大功率约束、RB 约束等,以最小化超可靠低时延切片用户的平均时延为目标,建立缓存、频谱、功率联合资源分配模型。基于匈牙利算法、线性整数规划方法和DDQN算法,将原NP-hard问题在双时间尺度内求解。仿真结果表明,所提算法在保证不同切片用户服务质量需求和提高频谱利用率方面优于传统算法。

关键词: 软件定义多模态, 车联网, 无线接入网切片, 双时间尺度, 资源分配

Abstract:

To effectively meet the differentiated quality of service (QoS) requirements of various vehicular applications, a dual time scale resource allocation algorithm for radio access network (RAN) slicing in software-defined polymorphic Internet of vehicles (IoV) was proposed.Considering the constraints of the minimum rate requirement of enhanced mobile broadband (eMBB) slice users, vehicle-to-vehicle (V2V) link reliability, the maximum power of nodes, the maximum number of RBs, a joint optimization problem of caching, spectrum, power allocation was formulated, with the aim of minimizing the average delay of ultra-reliable and low-latency communication (URLLC) slice users.By using the Hungarian algorithm, linear integer programming method and the double deep Q-Learning network (DDQN) algorithm, the original NP-hard problem was solved in dual time scales.The simulation results show that the proposed algorithm is superior to the traditional algorithm in ensuring the QoS requirements of different slice users and improving the spectrum utilization.

Key words: software-defined polymorphic, IoV, RAN slicing, dual time scale, resource allocation

中图分类号: 

No Suggested Reading articles found!