通信学报 ›› 2022, Vol. 43 ›› Issue (12): 66-76.doi: 10.11959/j.issn.1000-436x.2022238

• 学术论文 • 上一篇    下一篇

基于样本特征强化的APT攻击多阶段检测方法

谢丽霞1, 李雪鸥1, 杨宏宇1,2, 张良1, 成翔4,5   

  1. 1 中国民航大学计算机科学与技术学院,天津 300300
    2 中国民航大学安全科学与工程学院,天津 300300
    3 亚利桑那大学信息学院,美国 图森 AZ85721
    4 扬州大学信息工程学院,江苏 扬州 225127
    5 江苏省知识管理与智能服务工程研究中心,江苏 扬州 225127
  • 修回日期:2022-11-01 出版日期:2022-12-25 发布日期:2022-12-01
  • 作者简介:谢丽霞(1974- ),女,重庆人,博士,中国民航大学教授,主要研究方向为网络信息安全
    李雪鸥(1998- ),女,安徽合肥人,中国民航大学硕士生,主要研究方向为网络信息安全
    杨宏宇(1969- ),男,吉林长春人,博士,中国民航大学教授,主要研究方向为网络信息安全
    张良(1987- ),男,天津人,博士,美国亚利桑那大学研究员,主要研究方向为强化学习和基于深度学习的信号处理
    成翔(1988- ),男,新疆乌鲁木齐人,博士,扬州大学实验师,主要研究方向为网络与系统安全、网络安全态势感知、APT攻击检测
  • 基金资助:
    国家自然科学基金资助项目(U1833107)

Multi-stage detection method for APT attack based on sample feature reinforcement

Lixia XIE1, Xueou LI1, Hongyu YANG1,2, Liang ZHANG1, Xiang CHENG4,5   

  1. 1 School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
    2 School of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
    3 School of Information, University of Arizona, Tucson AZ85721, USA
    4 School of Information Engineering, Yangzhou University, Yangzhou 225127, China
    5 Jiangsu Engineering Research Center for Knowledge Management and Intelligent Service, Yangzhou 225127, China
  • Revised:2022-11-01 Online:2022-12-25 Published:2022-12-01
  • Supported by:
    The National Natural Science Foundation of China(U1833107)

摘要:

针对高级持续性威胁(APT)攻击检测方法普遍缺乏对APT攻击多阶段流量特征多样性的感知,对持续时间较长的APT攻击序列检测效果不佳且难以检测处于不同攻击阶段的多类潜在APT攻击等不足,提出一种基于样本特征强化的APT攻击多阶段检测方法。首先,根据APT攻击特点,将恶意流量划分至不同攻击阶段并构建APT攻击标识序列。其次,通过序列生成对抗网络模拟生成APT攻击多个阶段的标识序列,增加不同阶段序列样本数量实现样本特征强化并提高多阶段样本特征的多样性。最后,提出一种多阶段检测网络模型,基于多阶段感知注意力机制对提取的多阶段流量特征与标识序列进行注意力计算,得到阶段特征向量,并作为辅助信息与标识序列进行拼接操作,增强检测模型对不同阶段感知能力并提高检测精度。实验结果表明,所提方法在2个基准数据集上均有良好的检测效果,对多类潜在APT攻击的检测效果优于其他模型。

关键词: APT攻击检测, 多阶段流量特征, 样本特征强化, 多阶段感知注意力

Abstract:

Given the problems that the current APT attack detection methods were difficult to perceive the diversity of stage flow features and generally hard to detect the long duration APT attack sequences and potential APT attacks with different attack stages, a multi-stage detection method for APT attack based on sample feature reinforcement was proposed.Firstly, the malicious flow was divided into different attack stages and the APT attack identification sequences were constructed by analyzing the characteristics of the APT attack.In addition, sequence generative adversarial network was used to simulate the generation of identification sequences in the multi-stage of APT attacks.Sample feature reinforcement was achieved by increasing the number of sequence samples in different stages, which improved the diversity of multi-stage sample features.Finally, a multi-stage detection network was proposed.Based on the multi-stage perceptual attention mechanism, the extracted multi-stage flow features and identification sequences were calculated by attention to obtain the stage feature vectors.The feature vectors were used as auxiliary information to splice with the identification sequences.The detection model’s perception ability in different stages was enhanced and the detection accuracy was improved.The experimental results show that the proposed method has remarkable detection effects on two benchmark datasets and has better effects on multi-class potential APT attacks than other models.

Key words: APT attack detection, multi-stage flow feature, sample feature reinforcement, multi-stage perceptual attention

中图分类号: 

No Suggested Reading articles found!