通信学报 ›› 2023, Vol. 44 ›› Issue (2): 12-26.doi: 10.11959/j.issn.1000-436x.2023016
杨静雅1,2, 唐晓刚3, 周一青1,2, 刘玲1,2, Jiangzhou Wang4
修回日期:
2022-12-02
出版日期:
2023-02-25
发布日期:
2023-02-01
作者简介:
杨静雅(1995− ),女,河南商丘人,中国科学院计算技术研究所博士生,主要研究方向为通信与计算融合、无线通信、意图驱动网络等基金资助:
Jingya YANG1,2, Xiaogang TANG3, Yiqing ZHOU1,2, Ling LIU1,2, Wang Jiangzhou4
Revised:
2022-12-02
Online:
2023-02-25
Published:
2023-02-01
Supported by:
摘要:
6G 将以智能网络为演进形式,具备内生智能、开放性的特征。智能网络标准化研究中强调了意图驱动网络对实现网络智能化的必要性。但目前基于意图的网络将意图理解为“What to do”而非“What you want”,利用知识定义网络(KDN)可在一定程度上根据“What to do”完成“How to configure the network”。基于此,提出了意图抽象与知识联合驱动的 6G 内生智能网络架构,旨在根据“What you want”实现“How to configure the network”。首先,设计了意图抽象模块,通过意图获取、意图转译、意图映射和意图建模,从“What you want”获取“What to do”。其次,提出了认知模块,利用机器学习和逻辑推理联合动态优化获取网络知识,从而根据“What to do”完成“How to configure the network”。最后,介绍了支撑6G内生智能实现的意图映射、网络信息测量、网络策略生成、网络策略验证等关键技术及未来挑战。
中图分类号:
杨静雅, 唐晓刚, 周一青, 刘玲, Jiangzhou Wang. 意图抽象与知识联合驱动的6G内生智能网络架构[J]. 通信学报, 2023, 44(2): 12-26.
Jingya YANG, Xiaogang TANG, Yiqing ZHOU, Ling LIU, Wang Jiangzhou. 6G native intelligence network architecture enabled by intent abstraction and knowledge[J]. Journal on Communications, 2023, 44(2): 12-26.
[1] | GONG S Q , XING C W , ZHAO X ,et al. Unified IRS-aided MIMO transceiver designs via majorization theory[J]. IEEE Transactions on Signal Processing, 2021,69: 3016-3032. |
[2] | HUSSAIN B , DU Q H , IMRAN A ,et al. Artificial intelligence-powered mobile edge computing-based anomaly detection in cellular networks[J]. IEEE Transactions on Industrial Informatics, 2020,16(8): 4986-4996. |
[3] | LIU L , ZHOU Y Q , YUAN J H ,et al. Economically optimal MS association for multimedia content delivery in cache-enabled heterogeneous cloud radio access networks[J]. IEEE Journal on Selected Areas in Communications, 2019,37(7): 1584-1593. |
[4] | XIA B , WANG J L , XIAO K X ,et al. Outage performance analysis for the advanced SIC receiver in wireless NOMA systems[J]. IEEE Transactions on Vehicular Technology, 2018,67(7): 6711-6715. |
[5] | ZHOU Y Q , LIU H , PAN Z G ,et al. Cooperative multicast with location aware distributed mobile relay selection:performance analysis and optimized design[J]. IEEE Transactions on Vehicular Technology, 2017,66(9): 8291-8302. |
[6] | QI Y L , ZHOU Y Q , LIU Y F ,et al. Traffic-aware task offloading based on convergence of communication and sensing in vehicular edge computing[J]. IEEE Internet of Things Journal, 2021,8(24): 17762-17777. |
[7] | ZHANG Z Q , XIAO Y , MA Z ,et al. 6G wireless networks:vision,requirements,architecture,and key technologies[J]. IEEE Vehicular Technology Magazine, 2019,14(3): 28-41. |
[8] | ZHOU Y Q , LIU L , WANG L ,et al. Service-aware 6G:an intelligent and open network based on the convergence of communication,computing and caching[J]. Digital Communications and Networks, 2020,6(3): 253-260. |
[9] | LETAIEF K B , CHEN W , SHI Y M ,et al. The roadmap to 6G:AI empowered wireless networks[J]. IEEE Communications Magazine, 2019,57(8): 84-90. |
[10] | 赛迪智库无线电管理研究所. 6G概念及愿景白皮书[R]. 2020. |
CCID Group. 6G concept and vision white paper[R]. 2020. | |
[11] | 张平, 许晓东, 韩书君 ,等. 智简无线网络赋能行业应用[J]. 北京邮电大学学报, 2020,43(6): 1-9. |
ZHANG P , XU X D , HAN S J ,et al. Entropy reduced mobile networks empowering industrial applications[J]. Journal of Beijing University of Posts and Telecommunications, 2020,43(6): 1-9. | |
[12] | KATO N , MAO B M , TANG F X ,et al. Ten challenges in advancing machine learning technologies toward 6G[J]. IEEE Wireless Communications, 2020,27(3): 96-103. |
[13] | YU Q , REN J , ZHOU H B ,et al. A cybertwin based network architecture for 6G[C]// Proceedings of 2020 2nd 6G Wireless Summit (6G SUMMIT). Piscataway:IEEE Press, 2020: 1-5. |
[14] | SHEN X M , GAO J , WU W ,et al. AI-assisted network-slicing based next-generation wireless networks[J]. IEEE Open Journal of Vehicular Technology, 2020,1: 45-66. |
[15] | LIN M T , ZHAO Y P . Artificial intelligence-empowered resource management for future wireless communications:a survey[J]. China Communications, 2020,17(3): 58-77. |
[16] | BARIAH L , MOHJAZI L , MUHAIDAT S ,et al. A prospective look:key enabling technologies,applications and open research topics in 6G networks[J]. IEEE Access, 2020,8: 174792-174820. |
[17] | WIJETHILAKA S , LIYANAGE M . Survey on network slicing for Internet of Things realization in 5G networks[J]. IEEE Communications Surveys & tutorials, 2021,23(2): 957-994. |
[18] | ETSI. Improved operator experience through experiential net-worked intelligence (ENI)[R]. 2017. |
[19] | ITU-T FG-ML5G. Unified architecture for machine learning in 5G and future networks[R]. 2019. |
[20] | 3GPP. Telecommunication management; study on scenarios for intent driven management services for mobile networks:TR 28.812[S]. 2020. |
[21] | DAVID L . Intent:don’t tell me what to do! (tell me what you want)[EB]. 2015. |
[22] | ONF. Intent NBI - definition and principles[R]. 2016. |
[23] | ANDREW L . Intent-based networking[EB]. 2017. |
[24] | 开放数据中心标准推进委员会. 意图网络技术与应用白皮书[R]. 2019. |
Open Data Center Committee. Intent based networking technology and applicaion[R]. 2019. | |
[25] | AKLAMANU F , RANDRIAMASY S , RENAULT E . Demo:intent-based 5G IoT application network slice deployment[C]// Proceedings of 2019 10th International Conference on Networks of the Future (NoF). Piscataway:IEEE Press, 2019: 141-143. |
[26] | ABBAS K , KHAN T A , AFAQ M ,et al. Network slice lifecycle management for 5G mobile networks:an intent-based networking approach[J]. IEEE Access, 2021,9: 80128-80146. |
[27] | SUBRAMANYA T , RIGGIO R , RASHEED T . Intent-based mobile backhauling for 5G networks[C]// Proceedings of 2016 12th International Conference on Network and Service Management (CNSM). Piscataway:IEEE Press, 2016: 348-352. |
[28] | DAI W Z , XU Q L , YU Y ,et al. Tunneling neural perception and logic reasoning through abductive learning[J]. arXiv Preprint,arXiv:1802.01173, 2018. |
[29] | CLARK D D , PARTRIDGE C , RAMMING J C ,et al. A knowledge plane for the Internet[C]// Proceedings of the 2003 Conference on Applications,Technologies,Architectures,and Protocols for Computer Communications. New York:ACM Press, 2003: 3-10. |
[30] | MESTRES A , NATAL A R , CANCER J ,et al. Knowledge-defined networking[C]// Proceedings of 2017 ACM International Conference on the Applications,Technologies,Architectures,and Protocols for Computer Communication (2017 SIGCOMM). New York:ACM Press, 2017: 2-10. |
[31] | LU W , LIANG L P , KONG B X ,et al. AI-assisted knowledge-defined network orchestration for energy-efficient data center networks[J]. IEEE Communications Magazine, 2020,58(1): 86-92. |
[32] | PHAM Q T A , AOUL Y H , OUTTAGARTS A . Deep reinforcement learning based QoS-aware routing in knowledge-defined networking[C]// Proceedings of International Conference on Heterogeneous Networking for Quality,Reliability,Security and Robustness. Berlin:Springer, 2018: 14-26. |
[33] | 朱近康, 柴名扬, 周武旸 . 面向 B5G/6G 的三三三网络体系架构和优化学习机制[J]. 通信学报, 2021,42(4): 62-75. |
ZHU J K , CHAI M Y , ZHOU W Y . Three-three-three network architecture and learning optimization mechanism for B5G/6G[J]. Journal on Communications, 2021,42(4): 62-75. | |
[34] | 廖建新, 付霄元, 戚琦 ,等. 6G-ADM:基于知识空间的6G网络管控体系[J]. 通信学报, 2022,43(6): 3-15. |
LIAO J X , FU X Y , QI Q ,et al. 6G-ADM:knowledge based 6G network management and control architecture[J]. Journal on Communications, 2022,43(6): 3-15. | |
[35] | ZHOU Z H . Abductive learning:towards bridging machine learning and logical reasoning[J]. Science China Information Sciences, 2019,62(7): 1-3. |
[36] | 周洋程, 闫实, 彭木根 . 意图驱动的 6G 无线接入网络[J]. 物联网学报, 2020,4(1): 72-79. |
ZHOU Y C , YAN S , PENG M G . Intent-driven 6G radio access network[J]. Chinese Journal on Internet of Things, 2020,4(1): 72-79. | |
[37] | ZEYDAN E , TURK Y . Recent advances in intent-based networking:a survey[C]// Proceedings of 2020 IEEE 91st Vehicular Technology Conference. Piscataway:IEEE Press, 2020: 1-5. |
[38] | VAN D H J , VEGA M T , TIMMERER C ,et al. Objective and subjective QoE evaluation for adaptive point cloud streaming[C]// Proceedings of 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX). Piscataway:IEEE Press, 2020: 1-6. |
[39] | ABAR T , BEN L A , EL A S . Objective and subjective measurement QoE in SDN networks[C]// Proceedings of 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). Piscataway:IEEE Press, 2017: 1401-1406. |
[40] | ALRESHOODI M , WOODS J . Survey on QoE/QoS correlation models formultimedia services[J]. International Journal of Distributed and Parallel Systems, 2013,4(3): 53-72. |
[41] | GRAMAGLIA M , DIGON I , FRIDERIKOS V ,et al. Flexible connectivity and QoE/QoS management for 5G networks:the 5G NORMA view[C]// Proceedings of 2016 IEEE International Conference on Communications Workshops. Piscataway:IEEE Press, 2016: 373-379. |
[42] | WANG T Y , PERVEZ A , ZOU H . VQM-based QoS/QoE mapping for streaming video[C]// Proceedings of 2010 3rd IEEE International Conference on Broadband Network and Multimedia Technology. Piscataway:IEEE Press, 2010: 807-812. |
[43] | REICHL P , EGGER S , SCHATZ R ,et al. The logarithmic nature of QoE and the role of the Weber-Fechner law in QoE assessment[C]// Proceedings of 2010 IEEE International Conference on Communications. Piscataway:IEEE Press, 2010: 1-5. |
[44] | 中国通信学会. 通感算一体化网络前沿报告[R]. 2022. |
China Institute of Communications. Frontier report of communication,perception and computation integration network[R]. 2022. | |
[45] | 汪泽焱 . 一种基于多目标优化的 QoS 路由交互式算法[J]. 国防科技大学学报, 2002,24(4): 37-41. |
WANG Z Y . An interactive multiobject optimization QoS routing algorithm[J]. Journal of National University of Defense Technology, 2002,24(4): 37-41. | |
[46] | MOLDOVAN A N , GHERGULESCU I , MUNTEAN C H . VQAMap:a novel mechanism for mapping objective video quality metrics to subjective MOS scale[J]. IEEE Transactions on Broadcasting, 2016,62(3): 610-627. |
[47] | AMOUR L , BOULABIAR M I , SOUIHI S ,et al. An improved QoE estimation method based on QoS and affective computing[C]// Pro ceedings of 2018 International Symposium on Programming and Systems (ISPS). Piscataway:IEEE Press, 2018: 1-6. |
[48] | XU B , XIA W C , WEN W L ,et al. Adaptive hierarchical federated learning over wireless networks[J]. IEEE Transactions on Vehicular Technology, 2022,71(2): 2070-2083. |
[49] | TAN L Z , SU W , ZHANG W ,et al. In-band network telemetry:a survey[J]. Computer Networks, 2021,186, 107763. |
[50] | KIM C , BHIDE P , DOE E ,et al. In-band network telemetry (INT)[R]. 2016. |
[51] | GULENKO A , WALLSCHL?GER M ,, KAO O . A practical implementation of in-band network telemetry in open vSwitch[C]// Proceedings of 2018 IEEE 7th International Conference on Cloud Networking (CloudNet). Piscataway:IEEE Press, 2018: 1-4. |
[52] | KARAAGAC A , POORTER E D , HOEBEKE J . In-band network telemetry in industrial wireless sensor networks[J]. IEEE Transactions on Network and Service Management, 2020,17(1): 517-531. |
[53] | HAXHIBEQIRI J , ISOLANI P H , MARQUEZ-BARJA J M , ,et al. In-band network monitoring technique to support SDN-based wireless networks[J]. IEEE Transactions on Network and Service Management, 2021,18(1): 627-641. |
[54] | QU K G , ZHUANG W H , SHEN X M ,et al. Dynamic resource scaling for VNF over nonstationary traffic:a learning approach[J]. IEEE Transactions on Cognitive Communications and Networking, 2021,7(2): 648-662. |
[55] | WANG J , HU J , MIN G Y ,et al. Computation offloading in multi-access edge computing using a deep sequential model based on reinforcement learning[J]. IEEE Communications Magazine, 2019,57(5): 64-69. |
[56] | PENG Y , LIU L , ZHOU Y Q ,et al. Deep reinforcement learning-based dynamic service migration in vehicular networks[C]// Proceedings of 2019 IEEE Global Communications Conference. Piscataway:IEEE Press, 2019: 1-6. |
[57] | 张平, 牛凯, 田辉 ,等. 6G 移动通信技术展望[J]. 通信学报, 2019,40(1): 141-148. |
ZHANG P , NIU K , TIAN H ,et al. Technology prospect of 6G mobile communications[J]. Journal on Communications, 2019,40(1): 141-148. | |
[58] | LI Y H , YIN X , WANG Z L ,et al. A survey on network verification and testing with formal methods:approaches and challenges[J]. IEEE Communications Surveys & Tutorials, 2019,21(1): 940-969. |
[59] | LIU Y , HE C . A heuristics-based incremental probabilistic model checking at runtime[C]// Proceedings of 2020 IEEE 11th International Conference on Software Engineering and Service Science. Piscataway:IEEE Press, 2020: 355-358. |
[60] | HU H X , AHN G J , KULKARNI K . Detecting and resolving firewall policy anomalies[J]. IEEE Transactions on Dependable and Secure Computing, 2012,9(3): 318-331. |
[61] | VALENZA F , BASILE C , CANAVESE D ,et al. Classification and analysis of communication protection policy anomalies[J]. IEEE/ACM Transactions on Networking, 2017,25(5): 2601-2614. |
[62] | PANG L , YANG C G , CHEN D Y ,et al. A survey on intent-driven networks[J]. IEEE Access, 2020,8: 22862-22873. |
[63] | ZHU W J , FENG P , DENG M L . An approximate CTL model checking approach[C]// Proceedings of 2019 IEEE 10th International Conference on Software Engineering and Service Science. Piscataway:IEEE Press, 2019: 646-648. |
[64] | WANG P Z , HUANG L S , XU H L ,et al. Rule anomalies detecting and resolving for software defined networks[C]// Proceedings of 2015 IEEE Global Communications Conference. Piscataway:IEEE Press, 2015: 1-6. |
[65] | COMER D , RASTEGATNIA A . OSDF:an intent-based software defined network programming framework[C]// Proceedings of 2018 IEEE 43rd Conference on Local Computer Networks. Piscataway:IEEE Press, 2018: 527-535. |
[66] | 张海君, 陈安琪, 李亚博 ,等. 6G移动网络关键技术[J]. 通信学报, 2022,43(7): 189-202. |
ZHANG H J , CHEN A Q , LI Y B ,et al. Key technologies of 6G mobile network[J]. Journal on Communications, 2022,43(7): 189-202. |
[1] | 江沸菠, 彭于波, 董莉. 面向6G的深度图像语义通信模型[J]. 通信学报, 2023, 44(3): 198-208. |
[2] | 王晓云, 张小舟, 马良, 王亚娟, 楼梦婷, 姜涛, 金婧, 王启星, 刘光毅. 6G通信感知一体化网络的感知算法研究与优化[J]. 通信学报, 2023, 44(2): 219-230. |
[3] | 张海君, 陈安琪, 李亚博, 隆克平. 6G移动网络关键技术[J]. 通信学报, 2022, 43(7): 189-202. |
[4] | 廖建新, 付霄元, 戚琦, 王敬宇, 孙海峰. 6G-ADM:基于知识空间的6G网络管控体系[J]. 通信学报, 2022, 43(6): 3-15. |
[5] | 王志勤, 江甲沫, 刘沛西, 曹晓雯, 李阳, 韩凯峰, 杜滢, 朱光旭. 6G联邦边缘学习新范式:基于任务导向的资源管理策略[J]. 通信学报, 2022, 43(6): 16-27. |
[6] | 李昂, 陈建新, 魏昕, 周亮. 面向6G的跨模态信号重建技术[J]. 通信学报, 2022, 43(6): 28-40. |
[7] | 刘传宏, 郭彩丽, 杨洋, 陈九九, 朱美逸, 孙鲁楠. 面向智能任务的语义通信:理论、技术和挑战[J]. 通信学报, 2022, 43(6): 41-57. |
[8] | 唐盼, 林佳欣, 张建华, 田磊, 常钊玮, 夏亮, 王启星. 面向6G的太赫兹信道反射特性研究[J]. 通信学报, 2022, 43(5): 102-109. |
[9] | 张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199-212. |
[10] | 周振宇, 贾泽晗, 廖海君, 赵雄文, 张磊. 基于上下文学习的电力物联网接入控制方法[J]. 通信学报, 2021, 42(3): 150-159. |
[11] | 张思成,林云,涂涯,ShiwenMao. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020, 41(11): 12-21. |
[12] | 张平, 牛凯, 田辉, 聂高峰, 秦晓琦, 戚琦, 张娇. 6G移动通信技术展望[J]. 通信学报, 2019, 40(1): 141-148. |
[13] | 耿绥燕,李杏,王琦,王光波,王蒙军,孙韶辉,洪伟,赵雄文. 26GHz室内毫米波人体阻挡衰减特性研究[J]. 通信学报, 2016, 37(11): 68-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|