[1] |
DAI L L , WANG B C , YUAN Y F ,et al. Non-orthogonal multiple access for 5G:solutions,challenges,opportunities,and future research trends[J]. IEEE Communications Magazine, 2015,53(9): 74-81.
|
[2] |
范平志, 李里, 陈欢 ,等. 面向大规模物联网的随机接入:现状、挑战与机遇[J]. 通信学报, 2021,42(4): 1-21.
|
|
FAN P Z , LI L , CHEN H ,et al. Random access for massive Internet of Things:current status,challenges and opportunities[J]. Journal on Communications, 2021,42(4): 1-21.
|
[3] |
YANG Y , WU G , LI X ,et al. A survey of non-orthogonal multiple access technology for beyond-5G[J]. Radio Communications Technology, 2020,46(1): 26-34.
|
[4] |
TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007,53(12): 4655-4666.
|
[5] |
DONOHO D L , TSAIG Y , DRORI I ,et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012,58(2): 1094-1121.
|
[6] |
WANG B C , DAI L L , MIR T ,et al. Joint user activity and data detection based on structured compressive sensing for NOMA[J]. IEEE Communications Letters, 2016,20(7): 1473-1476.
|
[7] |
CIRIK A C , BALASUBRAMANYA N M , LAMPE L . Multi-user detection using ADMM-based compressive sensing for uplink grant-free NOMA[J]. IEEE Wireless Communications Letters, 2018,7(1): 46-49.
|
[8] |
AHN J , SHIM B , LEE K B . EP-based joint active user detection and channel estimation for massive machine-type communications[J]. IEEE Transactions on Communications, 2019,67(7): 5178-5189.
|
[9] |
戴维佳, 李乐天, 周武旸 . 基于期望传播的活跃用户检测和信道估计[J]. 中国科学技术大学学报, 2019,49(10): 797-804.
|
|
DAI W J , LI L T , ZHOU W Y . Active user detection and channel estimation based on expectation propagation[J]. Journal of University of Science and Technology of China, 2019,49(10): 797-804.
|
[10] |
HASAN S M , MAHATA K , HYDER M M . Uplink grant-free NOMA with sinusoidal spreading sequences[J]. IEEE Transactions on Communications, 2021,69(6): 3757-3770.
|
[11] |
TIPPING M E . Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001,1(6): 211-244.
|
[12] |
WIPF D P , RAO B D . Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004,52(8): 2153-2164.
|
[13] |
WIPF D P , RAO B D . An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007,55(7): 3704-3716.
|
[14] |
ZHANG Z L , RAO B D . Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011,5(5): 912-926.
|
[15] |
FANG J , SHEN Y N , LI F W ,et al. Support knowledge-aided sparse Bayesian learning for compressed sensing[C]// Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2015: 3786-3790.
|
[16] |
FANG J , SHEN Y N , LI H B ,et al. Pattern-coupled sparse Bayesian learning for recovery of block-sparse signals[J]. IEEE Transactions on Signal Processing, 2015,63(2): 360-372.
|
[17] |
AL-SHOUKAIRI M , SCHNITER P , RAO B D . A GAMP-based low complexity sparse Bayesian learning algorithm[J]. IEEE Transactions on Signal Processing, 2018,66(2): 294-308.
|
[18] |
ZHANG X X , FAN P Z , HAO L ,et al. Two efficient Bayesian multiuser detection algorithms for machine- type communications[C]// Proceedings of 2021 IEEE 94th Vehicular Technology Conference. Piscataway:IEEE Press, 2021: 1-5.
|
[19] |
ZHANG X X , LABEAU F , HAO L ,et al. Joint active user detection and channel estimation via Bayesian learning approaches in MTC communications[J]. IEEE Transactions on Vehicular Technology, 2021,70(6): 6222-6226.
|
[20] |
ZHANG X X , FAN P Z , LIU J Q ,et al. Bayesian learning-based multiuser detection for grant-free NOMA systems[J]. IEEE Transactions on Wireless Communications, 2022,21(8): 6317-6328.
|
[21] |
SANT A , LEINONEN M , RAO B D . Block-sparse signal recovery via general total variation regularized sparse Bayesian learning[J]. IEEE Transactions on Signal Processing, 2022,70: 1056-1071.
|
[22] |
CHEN S , CEN Z G , LI H J ,et al. Sparse Bayesian learning based on fast marginal likelihood maximization for joint user activity detection and channel estimation in grant-free NOMA[C]// Proceedings of 15th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics (CISP-BMEI). Piscataway:IEEE Press, 2022: 1-6.
|
[23] |
SHIM B , SONG B . Multiuser detection via compressive sensing[J]. IEEE Communications Letters, 2012,16(7): 972-974.
|
[24] |
高鹏宇 . 压缩感知辅助的非正交多址接入检测技术研究[D]. 成都:电子科技大学, 2019.
|
|
GAO P Y . Research on non-orthogonal multiple access detection technology assisted by compressed sensing[D]. Chengdu:University of Electronic Science and Technology of China, 2019.
|
[25] |
SHEKARAMIZ M , MOON T K . Compressive sensing via variational Bayesian inference under two widely used priors:modeling,comparison and discussion[J]. Entropy, 2023,25(3): 511.
|
[26] |
GLAUBITZ J , GELB A . Leveraging joint sparsity in hierarchical Bayesian learning[J]. arXiv Preprint,arXiv:2303.16954, 2023.
|
[27] |
SHEKARAMIZ M , MOON T K . Compressive sensing via variational Bayesian inference[C]// Proceedings of 2020 Intermountain Engineering,Technology and Computing (IETC). Piscataway:IEEE Press, 2020: 1-6.
|