[1] |
YANG C W , SHEN J J . ecover the tampered image based on VQ indexing[J]. Signal Processing, 2010,90(1):331-343.
|
[2] |
WEINBERGER K , BLITZER J , SAUL L . Distance Metric Learning for Large Margin Nearest Neighbor Classification[M]. Cambridge: MIT Press, 2006.
|
[3] |
GUILLAUMIN M , VERBEEK J , SCHMID C . Is that you? metric learning approaches for face identification[A]. Proceedings of the In-ternational Conference on Computer Vision[C]. Kyoto, 2009. 498-505.
|
[4] |
DAVIS J , KULIS B , JAIN P , et al . Information-theoretic metric learn-ing[A]. Proceedings of the 24th International Conference on Machine Learning[C]. New York,USA, 2007. 209-216.
|
[5] |
CAO J , WU Z A , WU J J , et al . Towards information-theoretic K-means clustering for image indexing[J]. Signal Process ng, 2013,93(7):2026-2037.
|
[6] |
李国波, 陈钢, 吴百锋 . 基于特征聚类的图像错误检测及掩盖算法通信学报[J]. 2010,31(12):1-11. LI G B , CHEN G , WU B F . Error detection and concealment based on characteristic clustering of image[J]. Journal on Communica ions, 2010,31(12):1-11.
|
[7] |
YANG J C , YU K , GONG Y , et al . Linear spatial pyramid matching using sparse coding for image classification[A]. Proceedings of the IEEE Int'l Conf on Computer Vision and Pattern Recognition[C]. Miami,USA, 2009. 1794-1801.
|
[8] |
尹学松, 胡恩良, 陈松灿 . 基于成对约束的判别型半监督聚类分析软件学报[J]. YIN X S , HU E L , CHEN S C . Discriminative semi-supervised clus-tering analysis with pairwise constraints[J]. Journal of Software, 2008,19(11):2791-2802.
|
[9] |
TAN P N , STEINBACH M , KUMAR V . Introduction to Data Min-ing[M]. Boston: Addison-Wesley, 2005.
|
[10] |
WU J J , XIONG H , CHEN J , et al . A generalization of proximity functions for K-means[A]. Proceedings of the IEEE International Conference on Data Mining[C]. Omaha, 2007. 361-370.
|
[11] |
付爱英, 曾勍炜, 徐知海 等 . 基于聚类的关联规则挖掘算法的研究及应用[J]. 通信学报, 2006,27(z1):177-180. FU A Y , ZENG Q W , XU Z H , et al . Research and application of the algorithms for mining association rules based on clustering[J]. Journalon Communications, 2006,27(z1):177-180.
|
[12] |
WU J J , ZHU S W , XIONG H , et al . Adapting the right measures for pattern discovery: a unified view[J]. IEEE Trans on Systems,Man,and Cybernetics, 2012,42(4):1203-1214.
|
[13] |
TAN P N , KUMAR V , SRIVASTAVA J . Selecting the right interes-tingness measure for association patterns[A]. Proceedin of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C]. Edmonton, 2002. 32-41.
|
[14] |
XIONG H , TAN P N , KUMAR V . Hyperclique pattern discovery[J]. Data Mining and Knowledge Discovery Journal, 2006,13(2):219-242.
|
[15] |
WU J J , ZHU S W , LIU H F , et al . Cosine interesting pattern discov-ery[J]. Information Sciences, 2012,184(1):176-195.
|
[16] |
LI F F , PIETRO P . A Bayesian hierarchical model for learning natural scene categories[A]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C]. San Diego,USA, 2005. 524-531.
|
[17] |
CLUTO a clustering toolkit[EB/OL]. 2012.
|
[18] |
ZHONG S , GOHOSH J . Generative model-based document cluster-ing: a comparative study[J]. Knowledge and Information Systems, 2005,8(3):374-384.
|
[19] |
VINH N X , EPPS J , BAILEY J . Information theoretic measures for clusterings comparison: is a correction for chance necessary?[A]. Pro-ceedings of the International Conference on Machine Learning[C]. Montreal, 2009. 1073-1080.
|
[20] |
CAO J , WU J J , et al . SAIL:summation-based incremental learning for information-theoretic text clustering[J]. IEEE Trans on Cybernetics, 2013,43(2):570-584.
|
[21] |
WU J J , XIONG H , CHEN J . COG: local decomposition for rare class analysis[J]. Data Mining and Knowledge Discovery, 2010,20(2):191-220.
|