通信学报 ›› 2013, Vol. 34 ›› Issue (10): 49-55.doi: 10.3969/j.issn.1000-436x.2013.10.006

• 学术论文 • 上一篇    下一篇

基于多维流量特征的IRC僵尸网络频道检测

闫健恩1,袁春阳2(),许海燕1,张兆心1   

  1. 1 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨150001
    2 国家计算机网络应急技术处理协调中心,北京100029
  • 出版日期:2013-10-25 发布日期:2017-08-10
  • 基金资助:
    国家高技术研究发展计划(“863”计划)基金资助项目;国家自然科学基金资助项目;国家自然科学基金资助项目;国家科技支撑计划基金资助项目;山东省中青年科学家奖励基金资助项目;威海市科技攻关基金资助项目;哈尔滨工业大学科研创新基金资助项目

Method of detecting IRC Botnet based on the multi-features of traffic flow

Jian-en YAN1,Chun-yang YUAN2(),Hai-yan XU1,Zhao-xin ZHANG1   

  1. 1 School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China
    2 National Computer Network Emergency Response Technical Team/Coordination Center of China,Beijing 100029,China
  • Online:2013-10-25 Published:2017-08-10
  • Supported by:
    The National High Technology Research and Development Program of China (863 Program);The National Natural Science Foundation of China;The National Natural Science Foundation of China;The National Science and Technology Support Pro-gram;Young and Middle-Aged Scientists Research Awards Fund of Shandong Province;Weihai Municipal Science and Technology Research;Harbin Institute of Technology Scientific Research Innovation Founda-tion

摘要:

针对IRC僵尸网络频道的检测问题,提出一种基于流量特征的检测方法。分析了僵尸网络频道数据流在不同周期内流量的聚类性、相似性、平均分组长度、流量高峰和协同流量高峰等特征,并以此作为僵尸网络频道检测的依据。检测过程中,采用改进的最大最小距离和k-means聚类分析算法,改善了数据聚类的效果。最后经过实验测试,验证了方法的有效性。

关键词: IRC协议, 僵尸网络, 数据流, 聚类分析

Abstract:

To resolve the problem of detecting IRC Botnet,a method based on traffic flow characteristics was proposed.The characteristics of Botnet channel traf?cwere analyzed in different periods such as data-clustering,data-similarity,the average length of packet,peak of synchronized traf?c,and peak of collaborative synchronized traf?c,and these characteristics were used to detect the botnet.In analyzing,improved max-min distance means and k-means cluster analysis algorithm were also presented to promote the efficiency of data clustering.At last,the availability of the method was verified by experiment.

Key words: IRC protocol, Botnet, raffic flow, cluster analysis

No Suggested Reading articles found!