[1] |
CHU D . Polyphase codes with good periodic correlation properties[J]. IEEE Transactions on Information Theory, 2003,18(4): 531-532.
|
[2] |
YU N Y , GONG G . New binary sequences with optimal autocorrelation magnitude[J]. IEEE Transactions on Information Theory, 2008,54(10): 4771-4779.
|
[3] |
WANG S H , LI C P , LEE K C ,et al. A novel low-complexity precoded OFDM system with reduced PAPR[J]. IEEE Transactions on Signal Processing, 2015,63(6): 1366-1376.
|
[4] |
MILEWSKI A . Periodic sequences with optimal properties for channel estimation and fast start-up equalization[J]. Journal of Research &Development, 1983,27(5): 426-431.
|
[5] |
LUKE H D , SCHOTTEN H D , HADINEJAD M H . Binary and quadriphase sequences with optimal autocorrelation properties:a survey[J]. IEEE Transactions on Information Theory, 2003,49(12): 3271-3282.
|
[6] |
FAN P Z , DARNELL M . Maximal length sequences over Gaussian integers[J]. Electronics Letters, 1994,30(16): 1286-1287.
|
[7] |
PEI S C , CHANG K W . Perfect Gaussian integer sequences of arbitrary length[J]. IEEE Signal Processing Letters, 2014,22(8): 1040-1044.
|
[8] |
CHANG H H , LI C P , LEE C D ,et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015,61(7): 4107-4115.
|
[9] |
PENG X P , XU C Q . New constructions of perfect Gaussian integer sequences of even length[J]. IEEE Communications Letters, 2014,18(9): 1547-1550.
|
[10] |
WANG S H , LI C P , CHANG H H ,et al. A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Communications, 2016,64(1): 365-376.
|
[11] |
LEE C D , HUANG Y P , CHANG Y ,et al. Perfect Gaussian integer sequences of odd period 2m?1[J]. IEEE Signal Processing Letters, 2015,22(7): 881-885.
|
[12] |
LEE C D , LI C P , CHANG H H ,et al. Further results on degree-2 perfect Gaussian integer sequences[J]. IET Communications, 2016,10(12): 1542-1552.
|
[13] |
LEE C D , HONG S H . Generation of long perfect Gaussian integer sequences[J]. IEEE Signal Processing Letters, 2017,24(4): 515-519.
|
[14] |
LEE C D , CHEN Y H . Families of Gaussian integer sequences with high energy efficiency[J]. IET Communications, 2016,10(17): 2416-2421.
|
[15] |
CHANG K J , CHANG H H . Perfect Gaussian integer sequences of period pk with degrees equal to or less than k+1[J]. IEEE Transactions on Communications, 2017,65(9): 3723-3733.
|
[16] |
YANG Y , TANG X H , ZHOU Z C . Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters, 2012,19(10): 615-618.
|
[17] |
STORER T . Cyclotomy and difference sets[M]. Chicago:Markham Publishing Company. 1967.
|
[18] |
DING C , YIN J . Sets of optimal frequency hopping sequences[J]. IEEE Transactions on Information Theory, 2008,54(8): 3741-3745.
|
[19] |
BENEDETTO J J , KONSTANTINIDIS I , RANGASWAMY M . Phase-coded waveforms and their design[J]. IEEE Signal Processing Magazine, 2009,26(1): 22-31.
|