物联网学报 ›› 2022, Vol. 6 ›› Issue (4): 139-148.doi: 10.11959/j.issn.2096-3750.2022.00309
汪静1, 何乐生1,2, 李忠红1, 李路迟1, 杨航1
修回日期:
2022-11-07
出版日期:
2022-12-30
发布日期:
2022-12-01
作者简介:
汪静(1998- ),男,云南大学信息学院硕士生,主要研究方向为嵌入式开发与物联网安全基金资助:
Jing WANG1, Lesheng HE1,2, Zhonghong LI1, Luchi LI1, Hang YANG1
Revised:
2022-11-07
Online:
2022-12-30
Published:
2022-12-01
Supported by:
摘要:
ASCON是2021年在NIST轻量级认证加密征集方案中最有希望成为国际标准的算法,该算法旨在物联网资源受限环境中获得最佳性能,在公开文献中还未见基于该算法的硬件IP核实现。提出了一种ASCON的软硬件协同实现方法,该方法通过S盒优化、先验计算和先进的流水线设计等硬件手段提升了ASCON在物联网安全认证应用中的速度,同时降低了内存占用。作为对比,在常见的物联网嵌入式处理器平台上软件移植了ASCON,结果显示所述方法的速度提升了7.9倍以上,而存储器的占用则降低了至少90%。所述方法可用于物联网安全专用集成电路或片上系统(SoC, system on a chip)的设计和实现。
中图分类号:
汪静, 何乐生, 李忠红, 李路迟, 杨航. 物联网轻量级认证加密算法ASCON的软硬件协同设计[J]. 物联网学报, 2022, 6(4): 139-148.
Jing WANG, Lesheng HE, Zhonghong LI, Luchi LI, Hang YANG. Software and hardware co-design of lightweight authenticated ciphers ASCON for the internet of things[J]. Chinese Journal on Internet of Things, 2022, 6(4): 139-148.
[1] | ALFERIDAH D K , JHANJHI N . A review on security and privacy issues and challenges in internet of things[J]. International Journal of Computer Science and Network Security IJCSNS, 2020,20(4): 263-86. |
[2] | ALABA F A , OTHMAN M , HASHEM I A T ,et al. Internet of things security:a survey[J]. Journal of Network and Computer Applications, 2017,88: 10-28. |
[3] | MOUSAVI S K , GHAFFARI A , BESHARAT S ,et al. Security of internet of things based on cryptographic algorithms:a survey[J]. Wireless Networks, 2021,27(2): 1515-1555. |
[4] | CHAHAL R K , KUMAR N , BATRA S . Trust management in social internet of things:a taxonomy,open issues,and challenges[J]. Computer Communications, 2020,150: 13-46. |
[5] | DIRO A , REDA H , CHILAMKURTI N ,et al. Lightweight authenticated-encryption scheme for internet of things based on publish-subscribe communication[J]. IEEE Access, 8: 60539-60551. |
[6] | HUANG W , LIAO Y J , ZHOU S J ,et al. An efficient deniable authenticated encryption scheme for privacy protection[J]. IEEE Access, 2019(7): 43453-43461. |
[7] | MARTíNEZ-RODRíGUEZ M C , SAURO DEL VALLE S , BROX P ,et al. Hardware implementation of authenticated ciphers for embedded systems[J]. IEEE Latin America Transactions, 2020,18(9): 1581-1591. |
[8] | DOBRAUNIG C , EICHLSEDER M , MENDEL F ,et al. Ascon v1.2:lightweight authenticated encryption and hashing[J]. Journal of Cryptology, 2021,34(3): 1-42. |
[9] | FOTOVVAT A , RAHMAN G M E , VEDAEI S S ,et al. Comparative performance analysis of lightweight cryptography algorithms for IoT sensor nodes[J]. IEEE Internet of Things Journal, 2021,8(10): 8279-8290. |
[10] | SONMEZ TURAN M , MCKAY K , CHANG D ,et al. Status report on the second round of the NIST lightweight cryptography standardization process[R]. National Institute of Standards and Technology, 2021. |
[11] | DEGABRIELE J P , JANSON C , STRUCK P . Sponges resist leakage:the case of authenticated encryption[M]// Lecture Notesin Computer Science. Cham: Springer International Publishing, 2019: 209-240. |
[12] | DALMASSO L , BRUGUIER F , BENOIT P ,et al. Evaluation of SPN-based lightweight crypto-ciphers[J]. IEEE Access, 2019(7): 10559-10567. |
[13] | MOLANES R F , COSTAS L , RODRíGUEZ-ANDINA J J , ,et al. Comparative analysis of processor-FPGA communication performance in low-cost FPSoCs[J]. IEEE Transactions on Industrial Informatics, 2021,17(6): 3826-3835. |
[14] | XILINX I . Xilinx Zynq-7000 SoC Technical Reference Manual[EB]. 2021. |
[15] | TEMPELMEIER M , DE SANTIS F , SIGL G ,et al. The CAESAR-API in the real world—towards a fair evaluation of hardware CAESAR candidates[C]// Proceedings of 2018 IEEE International Symposium on Hardware Oriented Security and Trust. Piscataway:IEEE Press, 2018: 73-80. |
[16] | 潘新祥, 胡习霜, 韩立宏 . 软硬件协同设计分析[J]. 指挥控制与仿真, 2008,30(3): 117-119. |
PAN X X , HU X S , HAN L H . Analysis on designation in cooperation with hardware-software[J]. Command Control & Simulation, 2008,30(3): 117-119. | |
[17] | COWART R , COE D , KULICK J ,et al. An implementation and experimental evaluation of hardware accelerated ciphers in all-programmable SoCs[C]// Proceedings of ACM SE '17:Proceedings of the SouthEast Conference. New York:ACM Press, 2017: 34-41. |
[18] | FERNANDEZ MOLANES R , AMARASINGHE K , RODRIGUEZ-ANDINA J , ,et al. Deep learning and reconfigurable platforms in the internet of things:challenges and opportunities in algorithms and hardware[J]. IEEE Industrial Electronics Magazine, 2018,12(2): 36-49. |
[19] | ZHAI X J , ALI A A S , AMIRA A ,et al. MLP neural network based gas classification system on zynq SoC[J]. IEEE Access, 2016(4): 8138-8146. |
[20] | SUMARUDIN A , ADIONO T , PUTRA W P . Flexible and reconfigurable system on chip for wireless sensor network[C]// Proceedings of 2014 International Conference on Information Technology Systems and Innovation (ICITSI). Piscataway:IEEE Press, 2014: 230-234. |
[21] | RUCKEBUSCH P , GIANNOULIS S , GARLISI D ,et al. WiSHFUL:enabling coordination solutions for managing heterogeneous wireless networks[J]. IEEE Communications Magazine, 2017,55(9): 118-125. |
[22] | AITSIALIA , FARHAT A , MOHAMAD S ,et al. Embedded platform for gas applications using hardware/software co-design and RFID[J]. IEEE Sensors Journal, 2018,18(11): 4633-4642. |
[23] | NIST. NIST LWC software performance benchmarks on microcontrollers[EB]. 2020. |
[24] | 李玉波 . 基于ARM体系看嵌入式处理器的发展[J]. 电子技术与软件工程, 2016(11): 213. |
LI Y B . Development of embedded processor based on ARM system[J]. Electronic Technology & Software Engineering, 2016(11): 213. | |
[25] | CARDOSO DOS SANTOS L , GRO?SCH?DL J ,, . An evaluation of the multi-platform efficiency of lightweight cryptographic permutations[C]// Proceedings of the International Conference on Information Technology and Communications Security. 2022: 70-85. |
[26] | 周朕, 何德彪, 罗敏 ,等. 紧凑的 Aigis-sig 数字签名方案软硬件协同实现方法[J]. 网络与信息安全学报, 2021,7(2): 64-76. |
ZHOU I , HE D B , LUO M ,et al. Compact Aigis-sig digital signature scheme based on software and hardware collaboration[J]. Journal of Network and Information Security, 2017,7(2): 64-76. | |
[27] | 钟震宇 . 基于 Python 硬件描述的 AXI4 总线接口设计与实现[D]. 广州:华南理工大学, 2020. |
ZHONG Z Y . Design and implementation of AXI4 bus interface based on python hardware description[D]. Guangzhou:South China University of Technology, 2020. | |
[28] | 许杰, 张子恒, 王新宇 ,等. 一种基于Zynq的CNN加速器设计与实现[J]. 计算机技术与发展, 2021,31(11): 108-113,121. |
XU J , ZHANG Z H , WANG X Y ,et al. Design and implementation of CNN accelerator based on zynq[J]. Computer Technology and Development, 2021,31(11): 108-113,121. | |
[29] | 刘祥 . 基于加密算法的软硬件协同设计与实现及云安全存储研究[D]. 广州:广东工业大学, 2020. |
LIU X . Software-hardware collaborative design and implementation based on encryption algorithm and cloud secure storage[D]. Guangzhou:Guangdong University of Technology, 2020. | |
[30] | 张盛仕, 胡湘宏, 熊晓明 . 基于国密算法 SM2 软硬件协同系统的FPGA架构[J]. 单片机与嵌入式系统应用, 2019,19(7): 15-19. |
ZHANG S S , HU X H , XIONG X M . FPGA architecture of software and hard ware co-design based on national secret algorithm SM2[J]. Microcontrollers& Embedded Systems, 2019,19(7): 15-19. | |
[31] | KAUR J , MOZAFFARIKERMANI M , AZARDERAKHSH R . Hardware constructions for error detection in lightweight authenticated cipher ASCON benchmarked on FPGA[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2022,69(4): 2276-2280. |
[32] | GROSS H , WENGER E , DOBRAUNIG C ,et al. Ascon hardware implementations and side-channel evaluation[J]. Microprocessors and Microsystems, 2017,52: 470-479. |
[33] | 刘玉宣 . 基于 FPGA 的高性能椭圆曲线密码加速技术研究[D]. 合肥:合肥工业大学, 2021. |
LIU Y X . Research on FPGA-based high-performance elliptic curve cryptography acceleration technology[D]. Hefei:Hefei University of Technology, 2021. | |
[34] | 方轶, 丛林虎, 邓建球 ,等. 基于FPGA的SM3算法快速实现方案[J]. 计算机应用与软件, 2020,37(6): 259-262. |
FANG Y , CONG L H , DENG J Q ,et al. Fast implementation of Sm3 algorithm based on FPGA[J]. Computer Applications and Software, 2020,37(6): 259-262. | |
[35] | 史冰清 . 高安全性的物联网网关设计与实现[D]. 成都:电子科技大学, 2018. |
SHI B Q . Design and implementation of IoT gateway for high security[D]. Chengdu:University of Electronic Science and Technology of China, 2018. |
[1] | 吴靖, 李晟, 张景, 辛明, 陶若文, 周舟, 潘力佳, 施毅. 面向物联网的新型柔性传感器[J]. 物联网学报, 2023, 7(2): 1-14. |
[2] | 梁峻阁, 宋怡然, 孙杨帆, 计樱莹, 潘力佳, 施毅. 基于可穿戴与可植入技术的人体健康物联网研究进展[J]. 物联网学报, 2023, 7(2): 26-34. |
[3] | 耿光磊, 高博, 熊轲, 樊平毅, 陆杨, 王煜炜. 联邦学习赋能6G网络综述[J]. 物联网学报, 2023, 7(2): 50-66. |
[4] | 卫浓钰, 江子龙, 陈芳炯. 基于位置信息和能量均衡的声电协同网络AODV[J]. 物联网学报, 2023, 7(1): 27-36. |
[5] | 申滨, 李银波, 梁枭伟. 基于增强加权质心定位的认知物联网用户频谱接入控制[J]. 物联网学报, 2023, 7(1): 93-108. |
[6] | 蒋伟进, 罗田甜, 杨莹, 李恩, 周文颖. 物联网环境下基于区块链技术的私有数据访问控制模型[J]. 物联网学报, 2022, 6(4): 169-182. |
[7] | 邢方圆, 贺诗波, 孙铭阳, 陈积明. 基于“云-管-边-端”物联网架构的碳排放监测[J]. 物联网学报, 2022, 6(4): 53-64. |
[8] | 张在琛, 尤肖虎, 党建, 吴亮, 朱秉诚, 陈绩, 汪磊. 无线光通信与物联网[J]. 物联网学报, 2022, 6(3): 1-13. |
[9] | 黄诺, 刘伟杰, 龚晨. 面向工业物联网的拍赫兹通信[J]. 物联网学报, 2022, 6(3): 37-46. |
[10] | 孙君, 赵尚维康. 工业物联网中基于Sarsa算法的节能计算卸载方案[J]. 物联网学报, 2022, 6(3): 82-90. |
[11] | 刘杨, 李崔灿, 彭木根. 低功耗水下物联网:愿景与关键技术[J]. 物联网学报, 2022, 6(2): 1-9. |
[12] | 杨靖, 谢金凤, 陈怡. 我国智慧城市场景中物联网终端评测与认证体系研究[J]. 物联网学报, 2022, 6(2): 26-37. |
[13] | 罗丹, 徐茹枝, 关志涛. 物联网环境中基于深度学习的差分隐私预算优化方法[J]. 物联网学报, 2022, 6(2): 65-76. |
[14] | 罗梓珲, 江呈羚, 刘亮, 郑霄龙, 马华东. 基于深度强化学习的智能车间调度方法研究[J]. 物联网学报, 2022, 6(1): 53-64. |
[15] | 王巍, 谷壬倩, 彭力, 赵继军, 魏忠诚, 常存喜. 基于无人机的物联网空基中继鲁棒优化[J]. 物联网学报, 2022, 6(1): 101-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|