物联网学报 ›› 2023, Vol. 7 ›› Issue (1): 109-117.doi: 10.11959/j.issn.2096-3750.2023.00324

• 理论与技术 • 上一篇    下一篇

基于时延和能耗约束的感知数据协作卸载策略研究

袁培燕1,2, 邵赛珂1,2, 魏然1,2, 张俊娜1,2, 赵晓焱1,2   

  1. 1 河南师范大学计算机与信息工程学院,河南 新乡 453007
    2 河南师范大学教学资源与教育质量评估大数据河南省工程实验室,河南 新乡 453007
  • 修回日期:2023-01-03 出版日期:2023-03-30 发布日期:2023-03-01
  • 作者简介:袁培燕(1978- ),男,博士,河南师范大学教授,主要研究方向为边缘计算与群智感知、移动自组织与机会网络、网络大数据等
    邵赛珂(1998- ),男,河南师范大学硕士生,主要研究方向为移动边缘计算
    魏然(1978- ),男,河南师范大学工程师,主要研究方向为数据库与软件开发
    张俊娜(1979- ),女,博士,河南师范大学副教授,主要研究方向为移动边缘计算、服务计算等
    赵晓焱(1981- ),女,博士,河南师范大学副教授,主要研究方向为移动边缘计算、D2D通信、物联网等
  • 基金资助:
    国家自然科学基金资助项目(62072159);国家自然科学基金资助项目(U1804164);国家自然科学基金资助项目(61902112);河南省教育厅重点项目(19A510015);河南省教育厅重点项目(20A520019);河南省教育厅重点项目(20A520020)

Research on the cooperative offloading strategy of sensory data based on delay and energy constraints

Peiyan YUAN1,2, Saike SHAO1,2, Ran WEI1,2, Junna ZHANG1,2, Xiaoyan ZHAO1,2   

  1. 1 College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
    2 Big Data Engineering Laboratory for Teaching Resources &Assessment of Education Quality, Henan Normal University, Xinxiang 453007, China
  • Revised:2023-01-03 Online:2023-03-30 Published:2023-03-01
  • Supported by:
    The National Natural Science Foundation of China(62072159);The National Natural Science Foundation of China(U1804164);The National Natural Science Foundation of China(61902112);The Key Project of the Education Department of Henan Province(19A510015);The Key Project of the Education Department of Henan Province(20A520019);The Key Project of the Education Department of Henan Province(20A520020)

摘要:

研究了物联网感知数据边缘卸载问题,即多个边缘节点相互协作,将原本需要发送给云中心的感知数据全部或部分卸载,以保护数据隐私与提升用户体验。在协作卸载过程中,感知数据传输以及边缘节点之间的信息交互会消耗系统资源,产生协作代价。如何在保持较低协作代价的基础上提高感知数据的卸载比例是一个具有挑战性的问题。首先,将该问题表述为一个满足网络时延和系统能耗约束的感知数据卸载比例和协作规模联合优化问题。其次,提出了一种基于约束投影和变量分裂的分布式交替方向乘子法(ADMM, alternating direction method of multipliers)进行求解。最后,使用MATLAB进行仿真实验,数值结果表明,与分布式优化算法(DOA, distributed optimization algorithm)、公平合作算法(FCA, fairness cooperation algorithm)和多子任务到多服务器卸载方案(MTMS, multi-subtasks-to-multi-servers offloading scheme)相比,所提方法在网络时延和能耗上均有较大优化。

关键词: 协同边缘计算, 数据卸载, 系统能耗, 网络时延, 分布式ADMM

Abstract:

The edge offloading of the internet of things (IoT) sensing data was investigated.Multiple edge servers cooperatively offload all or part of the sensing data initially sent to the cloud center, which protects data privacy and improves user experience.In the process of cooperative offloading, the transmission of the sensing data and the information exchange among edge servers will consume system resources, resulting in the cost of cooperation.How to maximize the offloading ratio of the sensing data while maintaining a low collaboration cost is a challenging problem.A joint optimization problem of sensing data offload ratio and cooperative scale satisfying the constraints of network delay and system energy consumption was formulated.Subsequently, a distributed alternating direction method of multipliers (ADMM) via constraint projection and variable splitting was proposed to solve the problem.Finally, simulation experiments were carried out on MATLAB.Numerical results show that the proposed method improved the network delay and energy consumption compared to the fairness cooperation algorithm (FCA), the distributed optimization algorithm (DOA), and multi-subtasks-to-multi-servers offloading scheme (MTMS) algorithm.

Key words: collaborative edge computing, data offloading, system energy consumption, network delay, distributed ADMM

中图分类号: 

No Suggested Reading articles found!