[1] |
JACK C R , PETERSEN R C , XU Y C ,et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment[J]. Neurology, 1999,52(7): 1397-1397.
|
[2] |
HANRAHAN C J , SHAH L M . MRI of spinal bone marrow:part 2,T1-weighted imaging-based differential diagnosis[J]. American Journal of Roentgenology, 2011,197(6): 1309-1321.
|
[3] |
EUSTACE S , TELLO R , DECARVALHO V ,et al. Whole body turbo STIR MRI in unknown primary tumor detection[J]. Journal of Magnetic Resonance Imaging, 1998,8(3): 751-753.
|
[4] |
DADAR M , PASCOAL T A , MANITSIRIKUL S ,et al. Validation of a regression technique for segmentation of white matter hyperintensities in Alzheimer’s disease[J]. IEEE Transactions on Medical Imaging, 2017,36(8): 1758-1768.
|
[5] |
PURANIK R , MUTHURANGU V , CELERMAJER D S ,et al. Congenital heart disease and multi-modality imaging[J]. Heart Lung and Circulation, 2010,19(3): 133-144.
|
[6] |
KINGMA D P , WELLING M . Auto-encoding variational bayes[J]. arXiv preprint, 2013,arXiv:1312.6114.
|
[7] |
GOODFELLOW I , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial nets[C]// Proceeding of the Advances in Neural Information Processing Systems.[S.l.:s.n.], 2014: 2672-2680.
|
[8] |
MIRZA M , OSINDERO S . Conditional generative adversarial nets[J]. arXiv preprint, 2014,arXiv:1411.1784.
|
[9] |
YI X , WALIA E , BABYN P . Generative adversarial network in medical imaging:a review[J]. Medical Image Analysis, 2019,58: 101552.
|
[10] |
MOUNSAVENG S , VAZQUEZ D , AYED I B ,et al. Adversarial learning of general transformations for data augmentation[J]. arXiv preprint, 2019,arXiv:1909.09801.
|
[11] |
LEDIG C , THEIS L , HUSZáR F ,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 4681-4690.
|
[12] |
BROCK A , DONAHUE J , SIMONYAN K . Large scale GAN training for high fidelity natural image synthesis[J]. arXiv preprint, 2018,arXiv:1809.11096.
|
[13] |
LITJENS G , KOOI T , BEJNORDI B E ,et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017,42: 60-88
|
[14] |
NIE D , TRULLO R , LIAN J ,et al. Medical image synthesis with context-aware generative adversarial networks[C]// Proceeding of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2017: 417-425.
|
[15] |
CHARTSIAS A , JOYCE T , DHARMAKUMAR R ,et al. Adversarial image synthesis for unpaired multi-modal cardiac data[C]// Proceeding of the 2nd International Workshop on Simulation and Synthesis in Medical Imaging. Cham:Springer, 2017: 3-13.
|
[16] |
HIASA Y , OTAKE Y , TAKAO M ,et al. Cross-modality image synthesis from unpaired data using CycleGAN[C]// Proceeding of the 3rd International Workshop on Simulation and Synthesis in Medical Imaging. Cham:Springer, 2018: 31-41.
|
[17] |
WOLTERINK J M , DINKLA A M , SAVENIJE M H F ,et al. Deep MR to CT synthesis using unpaired data[C]// Proceeding of the 3rd International Workshop on Simulation and Synthesis in Medical Imaging. Cham:Springer, 2017: 14-23.
|
[18] |
WELANDER P , KARLSSON S , EKLUND A . Generative adversarial networks for image-to-image translation on multi-contrast MR images-a comparison of CycleGAN and UNIT[J]. arXiv preprint, 2018,arXiv:1806.07777.
|
[19] |
OLUT S , SAHIN Y H , DEMIR U ,et al. Generative adversarial training for MRA image synthesis using multi-contrast MRI[C]// Proceeding of the 1st International Workshop on PRedictive Intelligence in Medicine. Cham:Springer, 2018: 147-154.
|
[20] |
HAN C , HAYASHI H , RUNDO L ,et al. GAN-based synthetic brain MR image generation[C]// Proceeding of the 2018 IEEE 15th International Symposium on Biomedical Imaging. Piscataway:IEEE Press, 2018: 734-738.
|
[21] |
DAR S U H , YURT M , KARACAN L ,et al. Image synthesis in multi-contrast MRI with conditional generative adversarial networks[J]. IEEE Transactions on Medical Imaging, 2019,38(10): 2375-2388.
|
[22] |
YU B T , WANG L P , SHI L ,et al. Ea-GANs:edge-aware generative adversarial networks for cross-modality MR image synthesis[J]. IEEE Transactions on Medical Imaging, 2019,38(7): 1750-1762.
|
[23] |
RONNEBERGER O , FISCHER P , BROX T . U-Net:Convolutional networks for biomedical image segmentation[C]// Proceeding of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015: 234-241.
|
[24] |
ULYANOV D , VEDALDI A , LEMPITSKY V . Instance normalization:The missing ingredient for fast stylization[J]. arXiv preprint, 2016,arXiv:1607.08022.
|
[25] |
MAAS A L , HANNUN A Y , NG A Y . Rectifier nonlinearities improve neural network acoustic models[C]// Proceeding of the 30th International Conference on Machine Learning.[S.l.:s.n.], 2013.
|
[26] |
WANG Z , BOVIK A C , SHEIKH H R ,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4): 600-612.
|