[1] |
STUDER R , BENJAMINS V R , FENSEL D . Knowledge engineering:principles and methods[J]. Data & Knowledge Engineering, 1998,25(1/2): 161-197.
|
[2] |
GRUBER T R . A translation approach to portable ontology specifications[J]. Knowledge Acquisition, 1993,5(2): 199-220.
|
[3] |
BORST P , AKKERMANS H , TOP J . Engineering ontologies[J]. International Journal of Human-Computer Studies, 1997,46(2/3): 365-406.
|
[4] |
TENORTH M , BEETZ M . Representations for robot knowledge in the KnowRob framework[J]. Artificial Intelligence, 2017,247: 151-169.
|
[5] |
AZEVEDO H , RIBEIRO BELO J P , F ROMERO R A . OntPercept:a perception ontology for robotic systems[C]// Proceedings of 2018 Latin American Robotic Symposium,2018 Brazilian Symposium on Robotics and 2018 Workshop on Robotics in Education. Piscataway:IEEE Press, 2018: 469-475.
|
[6] |
JOO S H , MANZOOR S , ROCHA Y G ,et al. Autonomous navigation framework for intelligent robots based on a semantic environment modeling[J]. Applied Sciences, 2020,10(9): 3219.
|
[7] |
MANZOOR S , JOO S H , ROCHA Y G ,et al. A novel semantic SLAM framework for humanlike high-level interaction and planning in global environment[C]// Proceedings of the 1st International Workshop on the Semantic Descriptor,Semantic Modeling and Mapping for Humanlike Perception and Navigation of Mobile Robots toward Large Scale Long-Term Autonomy.[S.l.:s.n.], 2019.
|
[8] |
ERSEN M , OZTOP E , SARIEL S . Cognition-enabled robot manipulation in human environments:requirements,recent work,and open problems[J]. IEEE Robotics & Automation Magazine, 2017,24(3): 108-122.
|
[9] |
BAYAT B , BERMEJO-ALONSO J , CARBONERA J ,et al. Requirements for building an ontology for autonomous robots[J]. Industrial Robot:an International Journal, 2016,43(5): 469-480.
|
[10] |
SMULLYAN R M . First-order logic[M].[S.l.]: Courier Corporation, 1995.
|
[11] |
BAADER F , CALVANESE D , MCGUINNESS D ,et al. The description logic handbook:theory,implementation and applications[M].[S.l.]: Cambridge University Press, 2003.
|
[12] |
KLYNE G , CARROLL J . Resource description framework (RDF):concepts and abstract syntax[Z]. 2004.
|
[13] |
BRICKLEY D , GUHA R . RDF vocabulary description language 1.0:RDF schema[Z]. 2004.
|
[14] |
MCGUINNESS D L , ED F H . OWL Web ontology language overview[Z]. 2004.
|
[15] |
HARMELEN F V , LIFSCHITZ V , PORTER B . Handbook of knowledge representation[M].[S.l.]: Elsevier, 2008.
|
[16] |
石莲, 孙吉贵 . 描述逻辑综述[J]. 计算机科学, 2006,33(1): 194-197,225.
|
|
SHI L , SUN J G . Description logic survey[J]. Computer Science, 2006,33(1): 194-197,225.
|
[17] |
TSARKOV D , HORROCKS I . FaCT++ description logic reasoner:system description[C]// Proceedings of the 3rd International Joint Conference on Automated Reasoning. Heidelberg:Springer, 2006.
|
[18] |
HAARSLEV V , M?LLER R . RACER system description[C]// Proceedings of the 1st International Joint Conference on Automated Reasoning. Heidelberg:Springer, 2001: 701-706.
|
[19] |
SIRIN E , PARSIA B , GRAU B C ,et al. Pellet:a practical OWL-DL reasoner[J]. Journal of Web Semantics, 2007,5(2): 51-53.
|
[20] |
SHEARER R , MOTIK B , HORROCKS I . HermiT:a highly-efficient OWL reasoner[C]// Proceedings of the 5th OWLED Workshop on OWL:Experiences and Directions,Collocated with the 7th International Semantic Web Conference.[S.l.:s.n.], 2008.
|
[21] |
HORROCKS I , PATEL-SCHNEIDER P F , BOLEY H ,et al. SWRL:a semantic Web rule language combining OWL and RuleML[J]. W3C Member Submission, 2004,21(79): 1-31.
|
[22] |
HAROLD B , PASCHKE A , SHAFIQ O . RuleML 1.0:the overarching specification of web rules[C]// Proceedings of the International Workshop on Rules and Rule Markup Languages for the Semantic Web. Heidelberg:Springer, 2010: 162-178.
|
[23] |
STERLING L , SHAPIRO E . The art of Prolog - advanced programming techniques[M].2nd ed.[S.l.:s.n.], 1986.
|
[24] |
TENORTH M , BEETZ M . KnowRob:a knowledge processing infrastructure for cognition-enabled robots[J]. The International Journal of Robotics Research, 2013,32(5): 566-590.
|
[25] |
BEETZ M , BE?LER D ,, HAIDU A , et al.Know rob 2 . 0—a 2nd generation knowledge processing framework for cognition-enabled robotic agents[C]// Proceedings of 2018 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2018: 512-519.
|
[26] |
WIELEMAKER J , SCHRIJVERS T , TRISKA M ,et al. SWI-Prolog[J]. Theory and Practice of Logic Programming, 2012,12(1/2): 67-96.
|
[27] |
LEMAIGNAN S . Grounding the interaction:knowledge management for interactive robots[J]. KI-Künstliche Intelligenz, 2013,27(2): 183-185.
|
[28] |
LEMAIGNAN S , ROS R , M?SENLECHNER L , ,et al. ORO,a knowledge management platform for cognitive architectures in robotics[J]. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010: 3548-3553.
|
[29] |
LENAT D B . CYC:a large-scale investment in knowledge infrastructure[J]. Communications of the ACM, 1995,38(11): 33-38.
|
[30] |
BRUNO B , CHONG N Y , KAMIDE H ,et al. The CARESSES EU-Japan project:making assistive robots culturally competent[C]// Proceedings of the Ambient Assisted Living.[S.l.:s.n.], 2017.
|
[31] |
BRUNO B , CHONG N Y , KAMIDE H ,et al. Paving the way for culturally competent robots:a position paper[C]// Proceedings of 2017 26th IEEE International Symposium on Robot and Human Interactive Communication. Piscataway:IEEE Press, 2017: 553-560.
|
[32] |
WAIBEL M , BEETZ M , CIVERA J ,et al. RoboEarth[J]. IEEE Robotics & Automation Magazine, 2011,18(2): 69-82.
|
[33] |
BEETZ M , TENORTH M , WINKLER J . Open-EASE[C]// Proceedings of 2015 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2015: 1983-1990.
|
[34] |
SAXENA A , JAIN A , SENER O ,et al. RoboBrain:large-scale knowledge engine for robots[J]. arXiv preprint,2014,arXiv:1412.0691.
|
[35] |
ZHAI Z Y , MARTíNEZ ORTEGA J F ,, LUCAS MARTíNEZ N ,et al. A rule-based reasoner for underwater robots using OWL and SWRL[J]. Sensors, 2018,18(10): 3481.
|
[36] |
SUN X L , ZHANG Y , CHEN J . High-level smart decision making of a robot based on ontology in a search and rescue scenario[J]. Future Internet, 2019,11(11): 230.
|
[37] |
HERNANDEZ C C , MILOSEVIC Z , OLIVARES C ,et al. Meta-control and self-awareness for the UX-1 autonomous underwater robot[M]// Robot 2019:fourth iberian robotics conference.[S.l.:s.n.], 2020.
|
[38] |
SUN X H , LU F , LI Q . The task reasoning of service robot based on ontology technology[C]// Proceedings of 2017 Chinese Automation Congress. Piscataway:IEEE Press, 2017: 3554-3559.
|
[39] |
PANE Y , ARBO M H , AERTBELI?N E , ,et al. A system architecture for CAD-based robotic assembly with sensor-based skills[J]. IEEE Transactions on Automation Science and Engineering, 2020,17(3): 1237-1249.
|
[40] |
BEUVRON F D B D , MARC-ZWECKER S , ZANNI-MERK C . Combining qualitative spatial reasoning and ontological reasoning for supporting robot tasks[C]// Proceedings of the International Conference on Knowledge Engineering and Ontology Development.[S.l.:s.n.], 2015.
|
[41] |
ROST P , HOTZ L , RIEGEN S V . Supporting mobile robot’s tasks through qualitative spatial reasoning[C]// Proceedings of the 9th International Conference on Informatics in Control,Automation and Robotics.[S.l.:s.n.], 2012.
|
[42] |
QIAN K , MA X D , DAI X Z ,et al. Knowledge-enabled decision making for robotic system utilizing ambient service components[J]. Journal of Ambient Intelligence and Smart Environments, 2014,6(1): 5-19.
|
[43] |
AKKALADEVI S C , PLASCH M , EITZINGER C ,et al. Towards a context enhanced framework for multi object tracking in human robot collaboration[C]// Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2018: 168-173.
|
[44] |
THRUN S . Probabilistic robotics[J]. Communications of the ACM, 2002,45(3): 52-57.
|
[45] |
GETOOR L , TASKAR B . Introduction to statistical relational learning[M].[S.l.]: The MIT Press, 2007.
|
[46] |
RICHARDSON M , DOMINGOS P . Markov logic networks[J]. Machine Learning, 2006,62(1/2): 107-136.
|
[47] |
LASKEY K B . MEBN:a language for first-order Bayesian knowledge bases[J]. Artificial Intelligence, 2008,172(2/3): 140-178.
|
[48] |
JAIN D , WALDHERR S , BEETZ M . Bayesian logic networks[R]. 2009.
|
[49] |
CARVALHO R N , LASKEY K B , COSTA P C G . PR-OWL - a language for defining probabilistic ontologies[J]. International Journal of Approximate Reasoning, 2017,91: 56-79.
|
[50] |
DA C P C G , LASKEY K B , LASKEY K J . PR-OWL:a Bayesian ontology language for the semantic Web[J]. CEUR Workshop Proceedings, 2005,173: 88-107.
|
[51] |
BENNETT B , FELLBAUM C . Formal ontology in information systems[C]// Proceedings of the 4th International Conference.[S.l.:s.n.], 2006.
|
[52] |
KAHLE D. Junction tree algorithm[Z]. 2008.
|
[53] |
FAN J L . Message-passing algorithm[M]// Constrained coding and soft iterative decoding. Boston: Springer, 2001: 23-96.
|
[54] |
GALV?O R K H , ARAúJO M C U , FRAGOSO W D ,et al. A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm[J]. Chemometrics and Intelligent Laboratory Systems, 2008,92(1): 83-91.
|
[55] |
LI X , BILBAO S , MARTíN-WANTON T , ,et al. SWARMs ontology:a common information model for the cooperation of underwater robots[J]. Sensors (Basel,Switzerland), 2017,17(3): 569.
|
[56] |
LI X , MARTíNEZ J F , RUBIO G ,et al. Context reasoning in underwater robots using MEBN[J]. arXiv preprint,2017,arXiv:1706.07204.
|
[57] |
LI X , MARTíNEZ J F , RUBIO G . Towards a hybrid approach to context reasoning for underwater robots[J]. Applied Sciences, 2017,7(2): 183.
|
[58] |
LI C C , TIAN G H . Transferring the semantic constraints in human manipulation behaviors to robots[J]. Applied Intelligence, 2020,50(6): 1711-1724.
|
[59] |
WANG S , ZHANG Y , LIAO Z Y . Building domain-specific knowledge graph for unmanned combat vehicle decision making under uncertainty[C]// Proceedings of 2019 Chinese Automation Congress. Piscataway:IEEE Press, 2019: 4718-4721.
|
[60] |
TENORTH M , DE LA TORRE F , BEETZ M . Learning probability distributions over partially-ordered human everyday activities[C]// Proceedings of 2013 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2013: 4539-4544.
|
[61] |
PANGERCIC D , TENORTH M , JAIN D ,et al. Combining perception and knowledge processing for everyday manipulation[C]// Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2010: 1065-1071.
|
[62] |
HIGGINS I , MATTHEY L , PAL A ,et al. Beta-VAE:learning basic visual concepts with a constrained variational framework[C]// Proceedings of the International Conference on Learning Representations.[S.l.:s.n.], 2016.
|
[63] |
ALI ESLAMI S M , REZENDE D J , BESSE F ,et al. Neural scene representation and rendering[J]. Science, 2018,360(6394): 1204-1210.
|
[64] |
MAO J Y , GAN C , KOHLI P ,et al. The neuro-symbolic concept learner:interpreting scenes,words,and sentences from natural supervision[J]. arXiv preprint,2019,arXiv:1904.12584.
|
[65] |
BATTAGLIA P W , HAMRICK J B , BAPST V ,et al. Relational inductive biases,deep learning,and graph networks[J]. arXiv preprint,2018,arXiv:1806.01261.
|
[66] |
KIPF T N , WELLING M . Semi-supervised classification with graph convolutional networks[J]. arXiv preprint,2016,arXiv:1609.02907.
|
[67] |
SUNG F , YANG Y X , ZHANG L ,et al. Learning to compare:relation network for few-shot learning[J]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 1199-1208.
|
[68] |
BRONSTEIN M M , BRUNA J , LECUN Y ,et al. Geometric deep learning:going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017,34(4): 18-42.
|
[69] |
KIPF T , FETAYA E , WANG K C ,et al. Neural relational inference for interacting systems[J]. arXiv preprint,2018,arXiv:1802.04687.
|
[70] |
YI K X , GAN C , LI Y Z ,et al. Clevrer:collision events for video representation and reasoning[J]. arXiv preprint,2019,arXiv:1910.01442.
|
[71] |
DING M Y , CHEN Z F , DU T ,et al. Dynamic visual reasoning by learning differentiable physics models from video and language[J]. arXiv preprint,2021,arXiv:2110.15358.
|
[72] |
GOODFELLOW I J , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial nets[J]. Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014,2: 2672-2680.
|
[73] |
CAI L W , WANG Y W . KBGAN:adversarial learning for knowledge graph embeddings[J]. arXiv preprint,2017,arXiv:1711.04071.
|
[74] |
WANG P F , LI S Y , PAN R . Incorporating GAN for negative sampling in knowledge representation learning[J]. arXiv preprint,2018,arXiv:1809.11017.
|
[75] |
QIN P D , WANG X , CHEN W H ,et al. Generative adversarial zero-shot relational learning for knowledge graphs[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020,34(5): 8673-8680.
|
[76] |
BI Y C . Dual coding of knowledge in the human brain[J]. Trends in Cognitive Sciences, 2021,25(10): 883-895.
|