[1] |
VOULODIMOS A , DOULAMIS N , DOULAMIS A ,et al. Deep learning for computer vision:a brief review[J]. Computational Intelligence and Neuroscience, 2018: 1-13.
|
[2] |
张红民, 李萍萍, 房晓冰 ,等. 改进 YOLOv3 网络模型的人体异常行为检测方法[J]. 计算机科学, 2022,49(4): 233-238.
|
|
ZHANG H M , LI P P , FANG X B ,et al. Human abnormal behavior detection method based on improved YOLOv3 network model[J]. Computer Science, 2022,49(4): 233-238.
|
[3] |
田庆, 胡蓉, 李佐勇 ,等. 基于 SE-YOLOv5s 的绝缘子检测[J]. 智能科学与技术学报, 2021,3(3): 312-321.
|
|
TIAN Q , HU R , LI Z Y ,et al. Insulator detection based on SE-YOLOv5s[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(3): 312-321.
|
[4] |
VIOLA P , JONES M . Robust real-time face detection[C]// Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2002.
|
[5] |
VEDALDI A , GULSHAN V , VARMA M ,et al. Multiple kernels for object detection[C]// Proceedings of 2009 IEEE 12th International Conference on Computer Vision. Piscataway:IEEE Press, 2010: 606-613.
|
[6] |
HARZALLAH H , JURIE F , SCHMID C . Combining efficient object localization and image classification[C]// Proceedings of 2009 IEEE 12th International Conference on Computer Vision. Piscataway:IEEE Press, 2010: 237-244.
|
[7] |
OJALA T , PIETIKAINEN M , MAENPAA T . Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(7): 971-987.
|
[8] |
GIRSHICK R , DONAHUE J , DARRELL T ,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014: 580-587.
|
[9] |
GIRSHICK R , . Fast R-CNN[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2016: 1440-1448.
|
[10] |
REN S Q , HE K M , GIRSHICK R ,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6): 1137-1149.
|
[11] |
HE K M , GKIOXARI G , DOLLáR P ,et al. Mask R-CNN[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 2980-2988.
|
[12] |
DAI J F , LI Y , HE K M ,et al. R-FCN:object detection via region-based fully convolutional networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. New York:ACM Press, 2016: 379-387.
|
[13] |
ZHU Y S , ZHAO C Y , WANG J Q ,et al. CoupleNet:coupling global structure with local parts for object detection[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 4146-4154.
|
[14] |
REDMON J , DIVVALA S , GIRSHICK R ,et al. You only look once:unified,real-time object detection[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 779-788.
|
[15] |
REDMON J , FARHADI A . YOLO9000:better,faster,stronger[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 6517-6525.
|
[16] |
REDMON J , FARHADI A . YOLOv3:an incremental improvement[J]. arXiv preprint, 2018,arXiv:1804.02767.
|
[17] |
BOCHKOVSKIY A , WANG C Y , LIAO H Y M . YOLOv4:optimal speed and accuracy of object detection[J]. arXiv preprint, 2020,arXiv:2004.10934.
|
[18] |
LIU W , ANGUELOV D , ERHAN D ,et al. SSD:single shot multibox detector[C]// Proceedings of European Conference on Computer Vision. Cham:Springer, 2016: 21-37.
|
[19] |
LIN T Y , GOYAL P , GIRSHICK R ,et al. Focal loss for dense object detection[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 2999-3007.
|
[20] |
GE Z , LIU S T , WANG F ,et al. YOLOX:exceeding YOLO series in 2021[J]. arXiv preprint, 2021,arXiv:2107.08430.
|
[21] |
LIU Z , MAO H Z , WU C Y ,et al. A ConvNet for the 2020s[C]// Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2022: 11966-11976.
|
[22] |
RADOSAVOVIC I , KOSARAJU R P , GIRSHICK R ,et al. Designing network design spaces[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2020: 10425-10433.
|
[23] |
STERGIOU A , POPPE R , KALLIATAKIS G . Refining activation downsampling with SoftPool[C]// Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE Press, 2022: 10337-10346.
|
[24] |
WANG Q L , WU B G , ZHU P F ,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2020: 11531-11539.
|
[25] |
YU J H , JIANG Y N , WANG Z Y ,et al. UnitBox:an advanced object detection network[C]// Proceedings of the 24th ACM International Conference on Multimedia. New York:ACM Press, 2016: 516-520.
|
[26] |
LIU Z , LI J G , SHEN Z Q ,et al. Learning efficient convolutional networks through network slimming[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 2755-2763.
|
[27] |
ZHANG D Q , YANG J L , YE D ,et al. LQ-nets:learned quantization for highly accurate and compact deep neural networks[C]// Proceedings of 2018 European Conference on Computer Vision. New York:ACM Press, 2018: 373-390.
|
[28] |
HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network[J]. arXiv preprint, 2015,arXiv:1503.02531.
|
[29] |
HOWARD A G , ZHU M L , CHEN B ,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint, 2017,arXiv:1704.04861.
|
[30] |
SANDLER M , HOWARD A , ZHU M L ,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 4510-4520.
|
[31] |
HOWARD A , SANDLER M , CHEN B ,et al. Searching for MobileNetV3[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE Press, 2020: 1314-1324.
|
[32] |
ZHANG X Y , ZHOU X Y , LIN M X ,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 6848-6856.
|
[33] |
MA N N , ZHANG X Y , ZHENG H T ,et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[C]// Proceedings of 2018 European Conference on Computer Vision. New York:ACM Press, 2018: 122-138.
|
[34] |
HAN K , WANG Y H , TIAN Q ,et al. GhostNet:more features from cheap operations[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2020: 1577-1586.
|
[35] |
WOMG A , SHAFIEE M J , LI F ,et al. Tiny SSD:a tiny single-shot detection deep convolutional neural network for real-time embedded object detection[C]// Proceedings of 2018 15th Conference on Computer and Robot Vision. Piscataway:IEEE Press, 2018: 95-101.
|
[36] |
IANDOLA F N , HAN S , MOSKEWICZ M W ,et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[J]. arXiv preprint, 2016,arXiv:1602.07360.
|
[37] |
FANG W , WANG L , REN P M . Tinier-YOLO:a real-time object detection method for constrained environments[J]. IEEE Access, 2019,8: 1935-1944.
|
[38] |
DOSOVITSKIY A , BEYER L , KOLESNIKOV A ,et al. An image is worth 16×16 words:transformers for image recognition at scale[J]. arXiv preprint, 2020,arXiv:2010.11929.
|
[39] |
LI Y T , HUANG H S , XIE Q S ,et al. Research on a surface defect detection algorithm based on MobileNet-SSD[J]. Applied Sciences, 2018,8(9): 1678.
|
[40] |
WONG A , FAMUORI M , SHAFIEE M J ,et al. YOLO nano:a highly compact you only look once convolutional neural network for object detection[C]// Proceedings of 2019 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS Edition. Piscataway:IEEE Press, 2021: 22-25.
|
[41] |
YU G H , CHANG Q Y , LYU W Y ,et al. PP-PicoDet:a better real-time object detector on mobile devices[J]. arXiv preprint, 2021,arXiv:2111.00902.
|
[42] |
HUANG X , WANG X X , LYU W Y ,et al. PP-YOLOv2:a practical object detector[J]. arXiv preprint, 2021,arXiv:2104.10419.
|
[43] |
XU S L , WANG X X , LYU W Y ,et al. PP-YOLOE:an evolved version of YOLO[J]. arXiv preprint, 2022,arXiv:2203.16250.
|