[1] Wang H, Wu Q, Wang H. Factorization bandits for interactive recommendation[C]//Thirty-First AAAI Conference on Artificial Intelligence. 2017.
[2] Mahmood T , Ricci F . Learning and adaptivity in interactive recommender systems[C]// Proceedings of the 9th International Conference on Electronic Commerce: The Wireless World of Electronic Commerce, 2007, University of Minnesota, Minneapolis, MN, USA, August 19-22, 2007. DBLP, 2007.
[3] Zhao X, Zhang L, Ding Z, et al. Recommendations with negative feedback via pairwise deep reinforcement learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 1040-1048.
[4] Zhou S, Dai X, Chen H, et al. Interactive recommender system via knowledge graph-enhanced reinforcement learning[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 179-188.
[5] Wang P, Fan Y, Xia L, et al. KERL: A knowledge-guided reinforcement learning model for sequential recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 209-218.
[6] Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12): 61-70.
[7] Rendle S. Factorization machines[C]//2010 IEEE International conference on data mining. IEEE, 2010: 995-1000.
[8] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv preprint arXiv:1511.06939, 2015.
[9] Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 1059-1068.
[10] Chen H, Dai X, Cai H, et al. Large-scale interactive recommendation with tree-structured policy gradient[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 3312-3320..
[11] Zheng G, Zhang F, Zheng Z, et al. DRN: A deep reinforcement learning framework for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference. 2018: 167-176.
[12] Zou L, Xia L, Ding Z, et al. Reinforcement learning to optimize long-term user engagement in recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 2810-2818.
[13] Zhao X, Zhang L, Ding Z, et al. Recommendations with negative feedback via pairwise deep reinforcement learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 1040-1048.
[14] Dulac-Arnold G, Evans R, van Hasselt H, et al. Deep reinforcement learning in large discrete action spaces[J]. arXiv preprint arXiv:1512.07679, 2015.
[15] Xian Y, Fu Z, Muthukrishnan S, et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]//Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval. 2019: 285-294.
[16] Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning[C]//Proceedings of the AAAI conference on artificial intelligence. 2016, 30(1).
[17] Koren Y , Bell R , Volinsky C . Matrix factorization techniques for recommender systems. IEEE, Computer Journal, 42(8), 30-37[J]. Computer, 2009, 42(8):30-37.
[18] Davies D L , Bouldin D W . A Cluster Separation Measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, PAMI-1(2):224-227.
|