[1] Yang
Xin, Li Miaomiao, Fujita H, et al. Incremental rough reduction with stable
attribute group[J]. Information Sciences, 2022, 589:283-299.
[2] Sun
Lin, Yin Tengyu, Ding Weiping, et al. Multilabel feature selection using
ML-ReliefF and neighborhood mutual information for multilabel neighborhood
decision systems[J]. Information Sciences, 2020, 537:401-424.
[3] 周涛,
陆惠玲,
任海玲,
等.
基于粗糙集的属性约简算法综述[J].
电子学报,
2021, 49(07):1439-1449.
[4] Hu
Qinghua, Yu Daren, Liu Jingfu, et al. Neighborhood rough set based
heterogeneous feature subset selection[J]. Information Sciences, 2008,
178(18):3577-3594.
[5] Pang
Qingqing, Zhang Li. Semi-supervised neighborhood discrimination index for
feature selection[J]. Knowledge-Based
Systems,(https://doi.org/10.1016/j.knosys.2020.106224)
[6] Hu
Meng, Tsang Eric C.C., Guo Yanting, et al. A novel approach to attribute
reduction based on weighted neighborhood rough sets[J]. Knowledge-Based
Systems, 2021.https://doi.org/10.1016/j.knosys.2021.106908.
[7] Shu
Wenhao, Qian Wenbin, Xie Yonghong. Incremental feature selection for dynamic
hybrid data using neighborhood rough set[J]. Knowledge-Based Systems, 2020.(https://doi.org/10.1016/j.knosys.2020.105516)
[8] 盛魁,
王伟,
卞显福,
等.
混合数据的邻域区分度增量式属性约简算法[J].
电子学报,
2020, 48(4): 682-696.
[9] 姚晟,
李初宴,
陈悦.
基于非平衡数据下不完备混合型信息系统的属性约简[J].
计算机应用研究,
2021, 38(05):1331-1335.
[10] Wang
Changzhong, Huang Yang, Ding Weiping, et al. Attribute reduction with fuzzy
rough self-information measures[J]. Information Sciences, 2021, 549:68-86.
[11] Yuan
Zhong, Chen Hongmei, Li Tianrui, et al. Unsupervised attribute reduction for
mixed data based on fuzzy rough sets[J]. Information Sciences, 2021, 572:67-87
[12] 栾雨雨,
王锡淮,
肖健梅.
基于混沌离散粒子群的粗糙集属性约简算法[J].
计算机仿真,
2021, 38(07):271-275.
[13] Hu
Meng, Tsang E C C, Guo Yanting, et al. Attribute reduction based on overlap
degree and k-nearest-neighbor rough sets in decision information systems[J].
Information Sciences, 2022, 584:301-324.
[14] 桑彬彬,
杨留中,
陈红梅,
等.优势关系粗糙集增量属性约简算法[J].
计算机科学,
2020, 47(08):137-143.
[15] 熊菊霞,
吴尽昭,
王秋红.
邻域互信息熵的混合型数据决策代价属性约简[J].
小型微型计算机系统,
2021, 42(08):1584-1590.
[16] 陈帅,
张贤勇,
唐玲玉,
等.
邻域互补信息度量及其启发式属性约简[J].
数据采集与处理,
2020, 35(04):630-641.
[17] 陈帅.
基于三层粒结构的邻域互补信息度量及其属性约简[D].
四川师范大学,2020.DOI:10.27347/d.cnki.gssdu.2020.001216.
[18] 姚晟,
徐风,
吴照玉,
等.
基于邻域粗糙互信息熵的非单调性属性约简[J].
控制与决策,
2019, 34(02):353-361.
[19] Salem
O A M, Liu Feng, Chen T P P, et al. Feature selection and threshold method
based on fuzzy joint mutual information[J]. International Journal of
Approximate Reasoning, 2021, 132:107-126
[20]
Hu Qinghua, Zhang Lei,
Zhang David, et al. Measuring relevance between discrete and continuous
features based on neighborhood mutual information[J]. Expert Systems with
Applications, 2011, 38:10737-10750
|