[1] 杨威, 刘艳如, 孟颖, 等. 浅谈临床医学术语的标准化管理[J]. 中国卫生标准管理, 2021, 12(12):1-4.
YANG W, LIU Y R, MENG Y, et al. Discussion on Standardization Management of Clinical Medical Terminology[J], China Health Standard Management | Chin Heal standard management. 2021, (12):1-4.
[2] 赵嘉莹, 高鹏, 朱勇俊, 等. 人工智能的应用将改进中国基层医疗卫生服务效能[J]. 中国全科医学, 2017, 20(34):4219-4233.
ZHAI J Y, GAO P, ZHU Y J, et al. The application of artificial intelligence could improve primary health care provision in china[J]. Chinese General Practice,2017,20(24):4219-4223.
[3] 曾晓天, 徐春园, 张勇, 等. 人工智能在医学大数据标准化体系建设中的研究进展[J]. 北京生物医学工程, 2019, 38(6): 640-644.
ZENG X T, XU C Y, ZHANG Y, et al. Research progress on artificial intelligence in the standardization system construction of medical big data[J]. Beijing Biomedical Engineering, 2019, 38(6): 640-644.
[4] 郑强, 刘齐军, 王正华, 等.生物医学命名实体识别的研究与进展[J]. 计算机应用研究,2010, 27(3):811-815,832.
ZHEN Q, LIU Q J, WANG Z H, et al. Research and development on biomedical named entity recognition[J]. APPLICATION RESEARCH OF COMPUTERS, 2010, 27(3):811-815,832.
[5] SETTLES B. Active learning literature suvery[J]. Machine Learning, 2010,15(2):201-221.
[6] Hanisch D, Fundel K, Mevissen H T, et al. ProMiner: rule-based protein and gene entity recognition. 2005.
[7] 刘一佳, 车万翔, 刘挺, 等. 基于序列标注的中文分词,词性标注模型比较分析[C]//第六届全国青年计算语言学会议论文集,上海, 2012年11月17日. 2012:26-34.
LIU Y J, CHE W X, LIU T, et al. A Comparison Study of Sequence Labeling Methods for Chinese Word Segmentation, POS Tagging Models[C]//The 6th Youth Conference of Computational Linguistics, ShangHai, Nov 17, 2012. 2012:26-34.
[8] 王浩畅, 赵铁军. 基于SVM的生物医学命名实体的识别[J]. 哈尔滨工程大学学报, 2006, 27(z1):570-574.
WANG H C, ZHAO T J, et al. SVM-based biomedical name entity recognition[J]. JOURNAL OF HARBIN ENGINEERING UNIVERSITY, 2006,27(z1):570-574.
[9] Morwal S, Chopra D. NERHMM: A Tool for Named Entity Recognition Based on Hidden Markov Model[J]. International Journal on Natural Language Computing, 2013, 2(2):43-49.
[10] Patil N, Patil A, Pawar B V. Named Entity Recognition using Conditional Random Fields[J]. Procedia Computer Science, 2020, 167:1181-1188.
[11] Lample G, Ballesteros M, Subramanian S, et al. Neural Architectures for Named Entity Recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016.
[12] Ouyang E, Li Y, Jin L, et al. Exploring N-gram Character Presentation in Bidirectional RNN-CRF for Chinese Clinical Named Entity Recognition[C]// CCKS: China Conference on Knowledge Graph and Semantic Computing 2017. 2017.
[13] Dong X, Chowdhury S, Qian L, et al. Transfer bi-directional LSTM RNN for named entity recognition in Chinese electronic medical records[C]//2017 IEEE 19Th international conference on e-health networking, applications and services.
[14] Zhang Z, Zhang Y, Zhou T. Medical knowledge attention enhanced neural model for named entity recognition in chinese emr[M]//Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. Springer, Cham, 2018: 376-385.
[15] Wang Q, Zhou Y, Ruan T, et al. Incorporating dictionaries into deep neural networks for the chinese clinical named entity recognition[J]. Journal of biomedical informatics, 2019, 92: 103133.
[16] Qiu J, Wang Q, Zhou Y, et al. Fast and accurate recognition of chinese clinical named entities with residual dilated convolutions[C]//2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2018: 935-942.
[17] Li X, Zhang H, Zhou X H. Chinese Clinical Named Entity Recognition with Variant Neural Structures Based on BERT Methods[J]. Journal of Biomedical Informatics, 2020, 107(5):103422.
[18] 张岑芳. 基于主动学习的命名实体识别算法[J]. 计算机与现代化, 2021(7): 18-22.
ZHANG C F. Named Entity Recognition Algorithm Based on Active Learning[J]. Computer and Modernization, 2021(7): 18-22.
[19] 卢宁杰. 结合主动学习的中文医疗命名实体识别研究[D]. 华东师范大学, 2020.
Lu N J. Research on Chinese Medical Named Entity Recognition Combined with Active Learning[D]. Shanghai: East China Normal University, 2020.
[20] C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal[J], 1948, 27:379-423, 623-656.
[21] Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised learning[C]//In Proceedings of the International Conference on Machine Learning(ICML), 1994, 148-156.
[22] T. Scheffer, C. Decomain, and S. Wrobel. Active hidden Markov models for information extraction[C]//In Proceedings of the International Conference on Advances in Intelligent Data Analysis (CAIDA), 2001, 309-318.
[23] Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]// 2018.
[24] Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5-6): 602-610.
[25] Sutton C, Mccallum A. An Introduction to Conditional Random Fields[J]. Foundations and Trends® in Machine Learning, 2010, 4(4): 267-373.
[26] Kingma D, Ba J. Adam: A Method for Stochastic Optimization[J]. Computer Science, 2014.
[27] Zan H, Li W, Zhang H, et al. Building a Pediatric Medical Corpus: Word Segmentation and Named Entity Annotation[C]. CLSW2020: 652-664.
[28] Lan Z, Chen M, Goodman S, et al. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations[C]//International Conference on Learning Representations. hgpu.org, 2020.
[29] Diao S, Bai J, Song Y, et al. ZEN: Pre-training Chinese Text Encoder Enhanced by N-gram Representations[C]// Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2020.
|