[1] |
QIU T , WEN C , XIE K ,et al. Efficient medical image enhancement based on CNN-FBB model[J]. IET Image Processing, 2019,13(10): 1736-1744.
|
[2] |
YOU K C , LONG M S , CAO Z J ,et al. Universal domain adaptation[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 2720-2729.
|
[3] |
GANIN Y , LEMPITSKY V . Unsupervised domain adaptation by backpropagation[C]// International Conference on Machine Learning.[S.l.:s.n. ], 2015: 1180-1189.
|
[4] |
LONG M S , WANG J M . Learning transferable features with deep adaptation networks[C]// International Conference on Machine Learning.[S.l.:s.n. ], 2015: 97-105.
|
[5] |
GOODFELLOW I , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial nets[M]. [S.l.:s.n.]. 2014.
|
[6] |
KAZEMINIA S , BAUR C , KUIJPER A ,et al. GANs for medical image analysis[J]. arXiv preprint, 2018,arXiv:1809.06222.
|
[7] |
HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 770-778.
|
[8] |
RONNEBERGER O , FISCHER P , BROX T . U-net:convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.[S.l.:s.n]. 2015: 234-241.
|
[9] |
ZHANG L , GOOYA A , FRANGI A F . Semi-supervised assessment of incomplete LV coverage in cardiac MRI using generative adversarial nets[C]// International Workshop on Simulation and Synthesis in Medical Imaging.[S.l.:s.n. ], 2017: 61-68.
|
[10] |
GLOROT X , BORDES A , BENGIO Y . Deep sparse rectifier neural networks[C]// The 14th International Conference on Artificial Intelligence and Statistics.[S.l.:s.n]. 2011: 315-323.
|
[11] |
IOFFE S , SZEGEDY C . Batch normalization:accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint, 2015,arXiv:1502.03167.
|
[12] |
HE K M , ZHANG X Y , REN S Q ,et al. Delving deep into rectifiers:Surpassing human-level performance on imagenet classification[C]// IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015: 1026-1034.
|
[13] |
KINGMA D P , BA J . Adam:a method for stochastic optimization[J]. arXiv preprint, 2014,arXiv:1412.6980.
|
[14] |
CETIN M S , CHRISTENSEN F , ABBOTT C C ,et al. Thalamus and posterior temporal lobe show greater internetwork connectivity at rest and across sensory paradigms in schizophrenia[J]. Neuroimage, 2014,97: 117-126.
|
[15] |
SHAFTO M A , TYLER L K , DIXON M ,et al. The cambridge centre for ageing and neuroscience (Cam-CAN) study protocol:a cross-sectional,lifespan,multidisciplinary examination of healthy cognitive ageing[J]. BMC Neurology, 2014,14(1):204.
|
[16] |
LIU W , WEI D T , CHEN Q L ,et al. Longitudinal test-retest neuroimaging data from healthy young adults in southwest China[J]. Scientific Data, 2017,4: 1-9.
|
[17] |
ESSEN D C V , SMITH S M , BARCH D M ,et al. The WU-Minn human connectome project:an overview[J]. Neuroimage, 2013,80(80): 62-79.
|
[18] |
MAREK K , JENNINGS D , LASCH S ,et al. The parkinson progression marker initiative (PPMI)[J]. Progress in Neurobiology, 2011,95: 629-635.
|
[19] |
SMITH S M , JENKINSON M , WOOLRICH M W ,et al. Advances in functional and structural MR image analysis and implementation as FSL[J]. Neuroimage, 2004,23: 208-219.
|
[20] |
SAHINER B , PEZESHK A , HADJIISKI L M ,et al. Deep learning in medical imaging and radiation therapy[J]. Medical Physics, 2019,46(1): 1-36.
|
[21] |
LI Q , BAI I Y , LIU T F . Deep learning classification of diabetic retinal images[J]. Journal of Image and Graphics, 2018,23: 1594-1603.
|
[22] |
PANG H , WANG Z . Deep learning model for detection of diabetic retinopathy[J]. Journal of Software, 2017,28: 3018-3029.
|
[23] |
HAN G H , LIU X B , ZHENG G Y . Detection method of lesion area in lung CT image[J]. Acta Automatica Sinica, 2017,43: 2071-2090.
|