通信学报 ›› 2019, Vol. 40 ›› Issue (2): 40-50.doi: 10.11959/j.issn.1000-436x.2019024

• 学术论文 • 上一篇    下一篇

基于多边缘服务器的个性化搜索隐私保护方法

张强1,王国军2(),张少波3   

  1. 1 中南大学信息科学与工程学院,湖南 长沙 410083
    2 广州大学计算机科学与网络工程学院,广东 广州 510006
    3 湖南科技大学计算机科学与工程学院,湖南 湘潭 411201
  • 修回日期:2018-08-14 出版日期:2019-02-01 发布日期:2019-03-04
  • 作者简介:张强(1988- ),男,湖南湘乡人,中南大学博士生,主要研究方向为个性化搜索、可信计算、云安全、隐私保护、大数据等。|王国军(1970- ),男,湖南长沙人,博士,广州大学博士生导师,主要研究方向为信息安全、可信计算、净室计算、信任推荐等。|张少波(1979- ),男,湖南邵东人,博士,湖南科技大学讲师,主要研究方向为移动社交网络隐私保护、云计算安全、大数据安全和隐私等。
  • 基金资助:
    国家自然科学基金资助项目(61632009);国家自然科学基金资助项目(61472451);广东省自然科学基金资助项目(2017A030308006);广东省高等教育高层次人才计划基金资助项目(2016ZJ01);中南大学中央高校基本科研业务费专项基金资助项目(2017zzts141)

Method of privacy protection based on multiple edge servers in personalized search

Qiang ZHANG1,Guojun WANG2(),Shaobo ZHANG3   

  1. 1 School of Information Science and Engineering,Central South University,Changsha 410083,China
    2 School of Computer Science and Cyber Engineering,Guangzhou University,Guangzhou 510006,China
    3 School of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan 411201,China
  • Revised:2018-08-14 Online:2019-02-01 Published:2019-03-04
  • Supported by:
    The National Natural Science Foundation of China(61632009);The National Natural Science Foundation of China(61472451);The Guangdong Provincial Natural Science Foundation(2017A030308006);The High-Level Talents Program of Higher Education in Guangdong Province(2016ZJ01);The Fundamental Research Funds for the Central Universities of Central South University(2017zzts141)

摘要:

在明文环境下根据用户的兴趣模型以及查询关键词能够获得用户个性化的搜索结果会导致敏感数据和用户隐私信息的泄露,不利于含有敏感数据的云搜索服务的推广,鉴于此,数据通常以密文的形式存储在云服务器中。用户在使用云搜索服务时,希望在海量的密文中快速地获得自己想要的搜索结果。为了解决这一问题,在个性化搜索中提出了一种基于多边缘服务器的隐私保护方法,该方法通过引入多个边缘服务器,并通过切割索引与查询矩阵,实现了在边缘服务器上计算部分用户查询与部分文件索引之间的相关性得分,云服务器只需要将边缘服务器上得到的相关性得分做简单处理即能返回与用户查询最相关的前K个文件,使其特别适用于大量用户在海量密文中的个性化搜索。安全分析和实验结果表明,该方法能很好地保护用户的隐私以及数据的机密性,并具有高效的搜索效率,能为用户提供了更好的个性化搜索体验。

关键词: 个性化搜索, 隐私保护, 边缘服务器, 索引切割, 可搜索加密

Abstract:

In the plaintext environment,users' personalized search results can be obtained through users' interest model and query keywords.However,it may possibly result in the disclosure of sensitive data and privacy,which prevents using sensitive data in cloud search.Therefore,data is generally stored in the form of ciphertext in the cloud server.In the process of cloud search service,users intend to quickly obtain the desired search results from the vast amount of ciphertext.In order to solve the problem,it was proposed that a method of privacy protection based on multiple edge servers in personalized search shall be used.By introducing multiple edge servers and cutting the index as well as the query matrix,the computing relevance scores of partial query and partial file index are achieved on the edge server.The cloud server only needs to get the relevance score on the edge server and make a simple processing that can return to the most relevant Top K files by user query,so as to make it particularly suitable for a large number of users in the massive personalized ciphertext search.Security analysis and experimental results show that this method can effectively protect users’ privacy and data confidentiality.In addition,it can guarantee high efficiency in search to provide better personalized search experience.

Key words: personalized search, privacy protection, edge server, index cutting, searchable encryption

中图分类号: 

[1] . 联想服务器助力好耶广告网络邮件系统[J]. 电信科学, 2009, 25(11): 107 .
[2] 杨付正,万 帅. 网络视频质量评估技术研究现状及发展动向[J]. 通信学报, 2012, 33(4): 15 -114 .
[3] 孙文邦,唐海燕,孙文斌,程 红. 基于变换基阵的三维SDCT表示方法[J]. 通信学报, 2012, 33(4): 22 -168 .
[4] 吕少卿1,张玉清1,2,倪平2. 基于公开信息的社交网络隐私泄露[J]. 通信学报, 2013, 34(Z1): 25 -196 .
[5] 唐朝霞,徐秋亮,朱建栋. 基于身份的指定多个验证者的代理签名方案[J]. 通信学报, 2008, 29(11A): 8 -45 .
[6] 陈立南,刘 阳,马 严,黄小红,赵庆聪,魏 伟. 基于统计的高效决策树分组分类算法[J]. 通信学报, 2014, 35(Z1): 12 -64 .
[7] 程 龙,吴成东,张云洲,贾子熙,纪 鹏. 基于二元传感器网络的多源定位研究[J]. 通信学报, 2011, 32(10): 20 -165 .
[8] 赵广松,陈 鸣. 自私性机会网络中激励感知的内容分发的研究[J]. 通信学报, 2013, 34(2): 9 -84 .
[9] 李元杰,杨绿溪,何振亚. 基于训练序列的MIMO信道估计[J]. 通信学报, 2006, 27(5): 1 -5 .
[10] 韩志耕,罗军舟,王良民. 不可否认协议分析的增广CSP方法[J]. 通信学报, 2008, 29(10): 2 -18 .