[1] |
TEAM I G P . EU General data protection regulation (GDPR) - an implementation and compliance guide,fourth edition[M]. Cambridgeshire: IT Governance Publishing, 2020.
|
[2] |
EVANS D , KOLESNIKOV V , ROSULEK M . A pragmatic introduction to secure multi-party computation[J]. Foundations and Trends in Privacy and Security, 2018,2(2/3): 70-246.
|
[3] |
DWORK C , ROTH A . The algorithmic foundations of differential privacy[J]. Foundations and Trends in Theoretical Computer Science, 2013,9(3/4): 211-407.
|
[4] |
ACAR A , AKSU H , ULUAGAC A S ,et al. A survey on homomorphic encryption schemes[J]. ACM Computing Surveys, 2019,51(4): 1-35.
|
[5] |
LIU X M . Hybrid privacy-preserving clinical decision support system in fog-cloud computing[J]. Future Generation Computer Systems, 2018,78: 825-837.
|
[6] |
CHEN Z K , ZHENG Z W , LIU X M ,et al. Privacy-preserving computation tookit on floating-point numbers[C]// Mobile Multimedia Communications. Berlin:Springer, 2021: 462-476.
|
[7] |
HU S S , LI M H , WANG Q ,et al. Outsourced biometric identification with privacy[J]. IEEE Transactions on Information Forensics and Security, 2018,13(10): 2448-2463.
|
[8] |
MA Z R . Privacy-preserving and high-accurate outsourced disease predictor on random forest[J]. Information Sciences, 2019,496: 225-241.
|
[9] |
LIU X M , CHOO K K R , DENG R H ,et al. Efficient and privacy-preserving outsourced calculation of rational numbers[J]. IEEE Transactions on Dependable and Secure Computing, 2018,15(1): 27-39.
|
[10] |
LI T , SAHU A K , TALWALKAR A ,et al. Federated learning:challenges,methods,and future directions[J]. IEEE Signal Processing Magazine, 2020,37(3): 50-60.
|
[11] |
BHOWMICK A , DUCHI J , FREUDIGER J ,et al. Protection against reconstruction and its applications in private federated learning[J]. arXiv Preprint,arXiv:1812.00984, 2018.
|
[12] |
MELIS L , SONG C Z , CRISTOFARO E D ,et al. Exploiting unintended feature leakage in collaborative learning[C]// Proceedings of 2019 IEEE Symposium on Security and Privacy. Piscataway:IEEE Press, 2019: 691-706.
|
[13] |
ZHANG C , LI S , XIA J ,et al. BatchCrypt:efficient homomorphic encryption for Cross-Silo federated learning[C]// Proceedings of 2020 USENIX Annual Technical Conference. Berkeley:USENIX Association, 2020: 493-506.
|
[14] |
董业, 侯炜, 陈小军 ,等. 基于秘密分享和梯度选择的高效安全联邦学习[J]. 计算机研究与发展, 2020,57(10): 2241-2250.
|
|
DONG Y , HOU W , CHEN X J ,et al. Efficient and secure federated learning based on secret sharing and gradients selection[J]. Journal of Computer Research and Development, 2020,57(10): 2241-2250.
|
[15] |
STROM N , . Scalable distributed DNN training using commodity GPU cloud computing[C]// Proceedings of Interspeech 2015. Piscataway:IEEE Press, 2015: 1488-1492.
|
[16] |
DRYDEN N , MOON T , JACOBS S A ,et al. Communication quantization for data-parallel training of deep neural networks[C]// Proceedings of 2016 2nd Workshop on Machine Learning in HPC Environments (MLHPC). Piscataway:IEEE Press, 2016: 1-8.
|
[17] |
AJI A F , HEAFIELD K . Sparse communication for distributed gradient descent[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Boston:Association for Computational Linguistics, 2017: 440-445.
|
[18] |
ALISTARH D , LI J , TOMIOKA R ,et al. QSGD:randomized quantization for communication-optimal stochastic gradient descent[J]. arXiv Preprint,arXiv:1610.02132, 2016.
|
[19] |
BONAWITZ K , IVANOV V , KREUTER B ,et al. Practical secure aggregation for privacy-preserving machine learning[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2017: 1175-1191.
|
[20] |
SHAMIR A . How to share a secret[J]. Communications of the ACM, 1979,22(11): 612-613.
|
[21] |
NIU C Y , WU F , TANG S J ,et al. Secure federated submodel learning[J]. arXiv Preprint,arXiv:1911.02254, 2019.
|
[22] |
BLOOM B H . Space/time trade-offs in hash coding with allowable errors[J]. Communications of the ACM, 1970,13(7): 422-426.
|
[23] |
DONG Y , CHEN X , SHEN L ,et al. EaSTFLy:efficient and secure ternary federated learning[J]. Computers & Security, 2020,94:101824.
|
[24] |
PAILLIER P , . Public-key cryptosystems based on composite degree residuosity classes[C]// Advances in Cryptology - EUROCRYPT ’99. Berlin:Springer, 1999: 223-238.
|
[25] |
BANNER R , NAHSHAN Y , SOUDRY D . Post training 4-bit quantization of convolutional networks for rapid-deployment[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems.New York:Curran Associates Inc. , 2019: 950-7958.
|
[26] |
WEN W , XU C , YAN F ,et al. TernGrad:ternary gradients to reduce communication in distributed deep learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems.New York:Curran Associates Inc. , 2017: 1508-1518.
|
[27] |
SONG L , ZHAO K , PAN P ,et al. Communication efficient SGD via gradient sampling with Bayes prior[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2021: 12060-12069.
|
[28] |
ANDERSON A G , BERG C P . The high-dimensional geometry of binary neural networks[J]. arXiv Preprint,arXiv:1705.07199, 2017.
|
[29] |
SOUDRY D , HUBARA I , MEIR R . Expectation backpropagation:parameter-free training of multilayer neural networks with continuous or discrete weights[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Massachusetts:MIT Press, 2014: 963-971.
|
[30] |
BANNER R , HUBARA I , HOFFER E ,et al. Scalable methods for 8-bit training of neural networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems.New York:Curran Associates Inc. , 2019: 5151-5159.
|
[31] |
TANG H L , LIAN X R , ZHANG T ,et al. DoubleSqueeze:parallel stochastic gradient descent with double-pass error-compensated compression[C]// International Conference on Machine Learning. New York:PMLR, 2019: 6155-6165.
|
[32] |
STICH S U , CORDONNIER J B , JAGGI M . Sparsified SGD with memory[J]. arXiv Preprint,arXiv:1809.07599, 2018.
|
[33] |
KOLOSKOVA A , STICH S U , JAGGI M . Decentralized stochastic optimization and gossip algorithms with compressed communication[C]// International Conference on Machine Learning. New York:PMLR, 2019: 3478-3487.
|
[34] |
LIN Y J , HAN S , MAO H Z ,et al. Deep gradient compression:reducing the communication bandwidth for distributed training[J]. arXiv Preprint,arXiv:1712.01887, 2017.
|
[35] |
COURBARIAUX M , BENGIO Y , DAVID J . Training deep neural networks with low precision multiplications[J]. arXiv Preprint,arXiv:1412.7024, 2014.
|
[36] |
GUPTA S , AGRAWAL A , GOPALAKRISHNAN K ,et al. Deep learning with limited numerical precision[C]// International Conference on Machine Learning. New York:PMLR, 2015: 1737-1746.
|
[37] |
LECUN Y , BOTTOU L , BENGIO Y ,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-2324.
|
[38] |
KRIZHEVSKY A , NAIR V , HINTON G ,et al. The CIFAR-10 dataset[EB]. 2014.
|