通信学报 ›› 2022, Vol. 43 ›› Issue (11): 90-103.doi: 10.11959/j.issn.1000-436x.2022208

• 学术论文 • 上一篇    下一篇

移动社交网络中面向隐私保护的精确好友匹配

彭滔1, 钟文韬1, 王国军1, 罗恩韬2, 熊金波3, 刘忆宁4, Hao Wang5   

  1. 1 广州大学计算机科学与网络工程学院,广东 广州 510006
    2 湖南科技学院信息工程学院,湖南 永州 425000
    3 福建师范大学计算机与网络空间安全学院,福建 福州 350117
    4 桂林电子科技大学计算机与信息安全学院,广西 桂林 541000
    5 挪威科技大学计算机科学学院,挪威 约维克 2815
  • 修回日期:2022-10-18 出版日期:2022-11-25 发布日期:2022-11-01
  • 作者简介:彭滔(1982− ),女,湖南长沙人,博士,广州大学副教授、硕士生导师,主要研究方向为移动群智感知网、社交网络隐私保护、云计算安全、区块链技术
    钟文韬(1998− ),男,云南曲靖人,广州大学硕士生,主要研究方向为移动群智感知网、社交网络隐私保护
    王国军(1970− ),男,湖南长沙人,博士,广州大学教授、博士生导师,主要研究方向为人工智能、区块链、网络安全、隐私保护
    罗恩韬(1978− ),男,湖南永州人,博士,湖南科技学院教授、硕士生导师,主要研究方向为移动社交网络、机器学习、边缘计算的安全与隐私保护等
    熊金波(1981− ),男,湖南益阳人,博士,福建师范大学教授、博士生导师,主要研究方向为云数据安全与隐私保护、移动数据安全、大数据安全
    刘忆宁(1973− ),男,河南巩义人,博士,桂林电子科技大学教授、博士生导师,主要研究方向为轻量级安全协议
    Hao Wang(1978− ),男,挪威科技大学教授、博士生导师,主要研究方向为大数据、知识管理、工业物联网、高性能计算、可信系统
  • 基金资助:
    国家自然科学基金资助项目(U1905211);国家自然科学基金资助项目(62272102);国家自然科学基金资助项目(61872088);国家自然科学基金资助项目(62072133);国家自然科学基金资助项目(62172159);国家重点研发计划基金资助项目(2020YFB1005804);湖南省自然科学基金资助项目(2021JJ30294)

Privacy-preserving precise profile matching in mobile social network

Tao PENG1, Wentao ZHONG1, Guojun WANG1, Entao LUO2, Jinbo XIONG3, Yining LIU4, Wang Hao5   

  1. 1 School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
    2 School of Information Engineering, Hunan University of Science and Engineering, Yongzhou 425000, China
    3 School of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China
    4 School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541000, China
    5 Department of Computer Science, Norwegian University of Science and Technology, Gj?vik 2815, Norway
  • Revised:2022-10-18 Online:2022-11-25 Published:2022-11-01
  • Supported by:
    The National Natural Science Foundation of China(U1905211);The National Natural Science Foundation of China(62272102);The National Natural Science Foundation of China(61872088);The National Natural Science Foundation of China(62072133);The National Natural Science Foundation of China(62172159);The National Key Research and Development Program of China(2020YFB1005804);Hunan Provincial Natural Science Foundation(2021JJ30294)

摘要:

好友匹配通过比较用户间属性相似度向交友请求者推荐好友,是移动社交网络应用中的核心功能。然而,在好友匹配的过程中,用户个人信息很可能会被服务器或者其他恶意用户窃取导致隐私泄露,且现有方案存在匹配结果不精确或者无法满足用户多维度隐私保护需求等挑战。基于此,提出面向隐私保护的精确好友匹配(P3M)方案,查询者可以根据自身需求灵活设定特征属性和距离的匹配范围。利用可比较内积编码(CIPE)和Paillier加密算法对用户属性和查询范围进行编码和加密,并设计安全点积协议实现用户属性和查询范围的安全比较。相较于现有方案, P3M 方案支持查询者自定义查询范围以获得精确的查询结果,综合考虑用户特征属性及位置属性等多维度的隐私保护。最后,对P3M的正确性和安全性进行详细分析和证明,并通过实验验证P3M方案的有效性和高效性。

关键词: 隐私保护, 移动社交网络, 好友匹配, 保序加密

Abstract:

Profile matching is a key feature in mobile social networking applications, where friends are recommended to requesters by comparing the similarity of attributes between them.However, users’ personal information is exposed to the risk of privacy disclosure in the process of profile matching.The existing solutions exist some issues such as inaccurate matching results or inability to meet users’ requirements for multi-dimensional privacy protection.Baesed on this, a privacy-preserving precise profile matching (P3M) scheme was proposed, which allowed users to flexibly set the matching range of attributes and distances according to their requirements.The Paillier encryption was utilized to ensure data security of users, and a secure dot product protocol was designed to achieve secure ciphertext comparison of user attributes and query ranges.The P3M realized multi-dimensional privacy-preserving of users including user feature attributes and location attributes.Finally, the correctness and security of P3M scheme were analyzed and proved in detail, and extensive experimental results verified the effectiveness and efficiency of P3M scheme.

Key words: privacy-preserving, mobile social network, profile matching, order-preserving encryption

中图分类号: 

No Suggested Reading articles found!