[1] |
YANG Q , LIU Y , CHEN T J ,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2): 1-19.
|
[2] |
杨强 . AI与数据隐私保护:联邦学习的破解之道[J]. 信息安全研究, 2019,5(11): 961-965.
|
|
YANG Q Y . AI and data privacy protection:the way to federated learning[J. Journal of Information Security Research, 2019,5(11): 961-965.
|
[3] |
KAIROUZ P , MCMAHAN H B , AVENT B ,et al. Advances and open problems in federated learning[J]. Foundations and Trends in Machine Learning, 2021,14(1-2): 1-210.
|
[4] |
LAMPORT L , SHOSTAK R , PEASE M . The Byzantine general problem[M]. New York: ACM Books, 2019.
|
[5] |
CHEN Y D , SU L L , XU J M . Distributed statistical machine learning in adversarial settings:Byzantine gradient descent[C]// Proceedings of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems. New York:ACM Press, 2018: 96-96.
|
[6] |
MCMAHAN B , MOORE E , RAMAGE D ,et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of Artificial intelligence and statistics. New York:PMLR, 2017: 1273-1282.
|
[7] |
LI X , HUANG K , YANG W ,et al. On the convergence of FedAvg on non-IID data[J]. arXiv Preprint,arXiv:1907.02189, 2019.
|
[8] |
BLANCHARD P , ELMHAMDI E M , GUERRAOUI R ,et al. Machine learning with adversaries:Byzantine tolerant gradient descent[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM Press, 2017: 118-128.
|
[9] |
LI T , SAHU A K , TALWALKAR A ,et al. Federated learning:challenges,methods,and future directions[J]. IEEE Signal Processing Magazine, 2020,37(3): 50-60.
|
[10] |
ZHU L , LIU Z , HAN S . Deep leakage from gradients[J]. arXiv Preprint,arXiv:1906.08935, 2019.
|
[11] |
HU R , GUO Y X , LI H N ,et al. Personalized federated learning with differential privacy[J]. IEEE Internet of Things Journal, 2020,7(10): 9530-9539.
|
[12] |
BELL J H , BONAWITZ K A , GASCóN A ,et al. Secure single-server aggregation with (poly)logarithmic overhead[C]// Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2020: 1253-1269.
|
[13] |
ZHANG C , LI S , XIA J ,et al. Batchcrypt:efficient homomorphic encryption for cross-silo federated learning[C]// Proceedings of the 2020 USENIX Annual Technical Conference. Berkeley:USENIX Association, 2020: 493-506.
|
[14] |
XIE C , KOYEJO O , GUPTA I . Generalized byzantine-tolerant SGD[J]. arXiv Preprint,arXiv:1802.10116, 2018.
|
[15] |
GUERRAOUI R , ROUAULT S . The hidden vulnerability of distributed learning in Byzantium[C]// Proceedings of International Conference on Machine Learning. New York:PMLR, 2018: 3521-3530.
|
[16] |
YIN D , CHEN Y , KANNAN R ,et al. Byzantine-robust distributed learning:towards optimal statistical rates[C]// Proceedings of International Conference on Machine Learning. New York:PMLR, 2018: 5650-5659.
|
[17] |
WU Z X , LING Q , CHEN T Y ,et al. Federated variance-reduced stochastic gradient descent with robustness to Byzantine attacks[J]. IEEE Transactions on Signal Processing, 2020,68: 4583-4596.
|
[18] |
HE L , KARIMIREDDY S P , JAGGI M . Byzantine-robust learning on heterogeneous datasets via resampling[J]. arXiv Preprint,arXiv:2006.09365, 2020.
|
[19] |
LI L , XU W , CHEN T ,et al. RSA:Byzantine-robust stochastic aggregation methods for distributed learning from heterogeneous datasets[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2019: 1544-1551.
|
[20] |
PRAKASH S , AVESTIMEHR A S . Mitigating Byzantine attacks in federated learning[J]. arXiv Preprint,arXiv:2010.07541, 2020.
|
[21] |
XIE C , KOYEJO S , GUPTA I . Zeno:distributed stochastic gradient descent with suspicion-based fault-tolerance[C]// Proceedings of International Conference on Machine Learning. New York:PMLR, 2019: 6893-6901.
|
[22] |
CAO X Y , FANG M H , LIU J ,et al. FLTrust:Byzantine-robust federated learning via trust bootstrapping[C]// Proceedings of 2021 Network and Distributed System Security Symposium. Virginia:the Internet Society, 2021: 1-18.
|
[23] |
ZHAI K , REN Q , WANG J ,et al. Byzantine-robust federated learning via credibility assessment on non-IID data[J]. arXiv Preprint,arXiv:2109.02396, 2021.
|
[24] |
PENG J , WU Z , LING Q ,et al. Byzantine-robust variance-reduced federated learning over distributed non-IID data[J]. Information Sciences, 2022,616: 367-391.
|
[25] |
CHEN M , MAO B , MA T . FedSA:a staleness-aware asynchronous federated learning algorithm with non-IID data[J]. Future Generation Computer Systems, 2021,120: 1-12.
|
[26] |
HE L , KARIMIREDDY S P , JAGGI M . Secure Byzantine-robust machine learning[J]. arXiv Preprint,arXiv:2006.04747, 2020.
|
[27] |
SO J , GüLER B , AVESTIMEHR A S . Byzantine-resilient secure federated learning[J]. IEEE Journal on Selected Areas in Communications, 2021,39(7): 2168-2181.
|
[28] |
KHAZBAK Y , TAN T X , CAO G H . MLGuard:mitigating poisoning attacks in privacy preserving distributed collaborative learning[C]// Proceedings of 29th International Conference on Computer Communications and Networks. Piscataway:IEEE Press, 2020: 1-9.
|
[29] |
MA X D , JIANG Q , SHOJAFAR M ,et al. DisBezant:secure and robust federated learning against Byzantine attack in IoT-enabled MTS[J]. IEEE Transactions on Intelligent Transportation Systems, 2023,24(2): 2492-2502.
|
[30] |
KENNEY J F , KEEPING E S . Mathematics of statistics-part one[J]. 1954,43(242): 332-335.
|
[31] |
LIU X M , DENG R H , CHOO K K R ,et al. An efficient privacy-preserving outsourced calculation toolkit with multiple keys[J]. IEEE Transactions on Information Forensics and Security, 2016,11(11): 2401-2414.
|
[32] |
BOST R , POPA R A , TU S ,et al. Machine learning classification over encrypted data[C]// Proceedings of 2015 Network and Distributed System Security Symposium. Virginia:the Internet Society, 2015: 1-15.
|
[33] |
KAMARA S , MOHASSEL P , RAYKOVA M . Outsourcing multi-party computation[J]. Cryptology ePrint Archive, 2011,1(1): 1-41.
|