智能科学与技术学报 ›› 2021, Vol. 3 ›› Issue (3): 322-333.doi: 10.11959/j.issn.2096-6652.202133

• 专刊:目标智能检测与识别 • 上一篇    

基于角度敏感的空间注意力机制的轻量型旋转目标检测器

尹开石1, 杨萌2, 顾曦3, 王志成3   

  1. 1 东华大学计算机科学与技术学院,上海 201620
    2 中国舰船研究设计中心,湖北 武汉 430064
    3 同济大学电子与信息工程学院,上海 201804
  • 修回日期:2021-08-06 出版日期:2021-09-01 发布日期:2021-09-01
  • 作者简介:尹开石(2001− ),男,东华大学计算机科学与技术学院在读,主要研究方向为图像分析、机器学习
    杨萌(1986− ),男,博士,中国舰船研究设计中心高级工程师,主要研究方向为舰船总体技术、环境智能感知
    顾曦(1996− ),女,同济大学电子与信息工程学院硕士生,主要研究方向为机器学习、深度学习
    王志成(1975− ),男,博士,同济大学电子与信息工程学院副研究员,主要研究方向为机器学习、深度学习
  • 基金资助:
    国防基础科研计划资助项目(JCKY2020206B037)

Light weight rotating object detector based on angle sensitive spatial attention mechanism

Kaishi YIN1, Meng YANG2, Xi GU3, Zhicheng WANG3   

  1. 1 School of Computer Science and Technology, Donghua University, Shanghai 201620, China
    2 China Ship Development and Design Center, Wuhan 430064, China
    3 College of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
  • Revised:2021-08-06 Online:2021-09-01 Published:2021-09-01
  • Supported by:
    The National Defense Basic Research Program of China(JCKY2020206B037)

摘要:

随着深度学习的快速发展,近年来越来越多的基于锚框的目标检测算法被应用于遥感图像上,然而提高算法精度的代价是牺牲了检测速度。因此,选择无锚框的目标检测网络框架,针对遥感场景的特点,提出了一种旋转框的遥感检测算法。根据旋转框与其外接矩形框的空间位置关系,提出了一种简单有效的旋转框表示方式。此外,设计了一种用于辅助检测旋转目标的角度敏感的空间注意力机制,通过引入角度信息提升模型对旋转目标的检测能力。提出的算法在公开遥感数据集DOTA上进行了实验,旋转框的目标检测网络的平均精度均值达到了68.5%,检测速度达到了每秒17.4帧图像。

关键词: 旋转检测, 遥感图像, 无锚框, 注意力机制

Abstract:

With the rapid development of deep learning, more and more target detection algorithms based on anchor frame are applied to remote sensing images in recent years.However, the cost of improving the accuracy of the algorithm is to sacrifice the detection speed.Therefore, the target detection network framework of anchor free was chosen, and a remote sensing detection algorithm of rotating frame was proposed according to the characteristics of remote sensing scene.A simple and effective representation of rotating frame was proposed according to the spatial position relationship between rotating frame and its external rectangular frame.In addition, an angle sensitive attention mechanism was designed to assist the detection of rotating targets.By introducing angle information, the detection ability of the model for rotating targets was improved.The proposed algorithm was tested on the open remote sensing dataset DOTA.The mean average precision of target detection network of rotating frame is 68.5% and the detection speed is 17.4 frames per second.

Key words: rotation detection, remote sensing image, anchor free, attention mechanism

中图分类号: 

No Suggested Reading articles found!