[1] |
郑南宁 . 人工智能新时代[J]. 智能科学与技术学报, 2019,1(1): 1-3.
|
|
ZHENG N N . The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 1-3.
|
[2] |
张钹 . 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019,1(1): 4-6.
|
|
ZHANG B . Artificial intelligence is entering the post deep-learning era[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 4-6.
|
[3] |
GRASSI A P , FROLOV V , LEóN F P , . Information fusion to detect and classify pedestrians using invariant features[J]. Information Fusion, 2011,12(4): 284-292.
|
[4] |
HWANG S , PARK J , KIM N ,et al. Multispectral pedestrian detection:benchmark dataset and baseline[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015: 1037-1045.
|
[5] |
ZHOU K L , CHEN L S , CAO X . Improving multispectral pedestrian detection by addressing modality imbalance problems[M]. Computer Vision – ECCV 2020. Cham: Springer International Publishing, 2020: 787-803.
|
[6] |
J?RG W , VOLKER F , MICHAEL H ,et al. Multispectral pedestrian detection using deep fusion convolutional neural networks[C]// Proceedings of the 24th European Symposium on Artificial Neural Networks,Computational Intelligence and Machine Learning.[S.l.:s.n.], 2016.
|
[7] |
LIU J J , ZHANG S T , WANG S ,et al. Multispectral deep neural networks for pedestrian detection[C]// Proceedings of the British Machine Vision Conference.[S.l.:s.n.], 2016: 731-733.
|
[8] |
VANDERSTEEGEN M , BEECK K , GOEDEMé T , . Real-time multispectral pedestrian detection with a single-pass deep neural network[C]// Proceedings of the International Conference on Image Analysis and Recognition.[S.l.:s.n.], 2018: 419-426.
|
[9] |
REDMON J , FARHADI A . YOLO9000:better,faster,stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 6517-6525.
|
[10] |
DENG J , DONG W , SOCHER R ,et al. ImageNet:a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2009: 248-255.
|
[11] |
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014: 113-123.
|
[12] |
LIN M , CHEN Q , YAN S C . Network in network[J]. Computer Science, 2013: 211-223.
|
[13] |
SHEN J F , ZUO X , YANG W K ,et al. Differential features for pedestrian detection:a Taylor series perspective[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,20(8): 2913-2922.
|
[14] |
WOO S , PARK J , LEE J Y ,et al. CBAM:convolutional block attention module[M]. Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
[15] |
REN S Q , HE K M , GIRSHICK R ,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6): 1137-1149.
|
[16] |
ZHOU X Y , WANG D Q , PHILIPP K . Objects as points[J]. Communications and Computer Sciences, 2019: 232-239.
|
[17] |
LIN T Y , GOYAL P , GIRSHICK R ,et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 2999-3007.
|
[18] |
DAI J F , QI H Z , XIONG Y W ,et al. Deformable convolutional networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 764-773.
|
[19] |
ZHANG L , ZHU X Y , CHEN X Y ,et al. Weakly aligned cross-modal learning for multispectral pedestrian detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 5126-5136.
|
[20] |
K?NIG D , ADAM M , JARVERS C ,et al. Fully convolutional region proposal networks for multispectral person detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE Press, 2017: 243-250.
|
[21] |
LI C Y , SONG D , TONG R F ,et al. Illumination-aware Faster R-CNN for robust multispectral pedestrian detection[J]. Pattern Recognition, 2019,85: 161-171.
|
[22] |
GUAN D Y , CAO Y P , YANG J X ,et al. Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection[J]. Information Fusion, 2019,50: 148-157.
|
[23] |
LIU S T , HUANG D , WANG Y H . Adaptive NMS:refining pedestrian detection in a crowd[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 6452-6461.
|