[1] |
雍那, 杜莲, 胡华 ,等. 抑郁症患者攻击行为与应对方式、焦虑、抑郁的关系[J]. 第三军医大学学报, 2014,36(11): 1133-1137.
|
|
YONG N , DU L , HU H ,et al. Correlation of aggressive behavior with coping styles,anxiety and depression in major depressed patients[J]. Journal of Third Military Medical University, 2014,36(11): 1133-1137.
|
[2] |
CRUMP C , SUNDQUIST K , WINKLEBY M A ,et al. Mental disorders and vulnerability to homicidal death:Swedish nationwide cohort study[J]. BMJ (Clinical Research Ed), 2013,346:f557.
|
[3] |
PARK M , CHA C , CHA M . Depressive moods of users portrayed in Twitter[J]. Proceedings of the ACM SIGKDD Workshop on Healthcare Informatics (HI-KDD), 2012: 1-8.
|
[4] |
PARK M , MCDONALD D W , CHA M . Perception differences between the depressed and non-depressed users in twitter[C]// Proceedings of the 7th International AAAI Conference on Weblogs and Social Media.[S.l.:s.n.], 2013: 476-485.
|
[5] |
XU R H , ZHANG Q P . Understanding online health groups for depression:social network and linguistic perspectives[J]. Journal of Medical Internet Research, 2016,18(3): e63.
|
[6] |
DE CHOUDHURY M , GAMON M , COUNTS S ,et al. Predicting depression via social media[C]// Proceedings of the 7th International AAAI Conference on Weblogs and Social Media.[S.l.:s.n.], 2013: 128-137.
|
[7] |
SHEN G Y , JIA J , NIE L Q ,et al. Depression detection via harvesting social media:a multimodal dictionary learning solution[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California:International Joint Conferences on Artificial Intelligence Organization, 2017: 3838-3844.
|
[8] |
TROTZEK M , KOITKA S , FRIEDRICH C M . Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences[J]. IEEE Transactions on Knowledge and Data Engineering, 2018,32(3): 588-601.
|
[9] |
KIM Y , . Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2014.
|
[10] |
LIU Y , WU Y F . FNED:a deep network for fake news early detection on social media[J]. ACM Transactions on Information Systems, 2020,38(3): 1-33.
|
[11] |
NASKAR D , SINGH S R , KUMAR D ,et al. Emotion dynamics of public opinions on twitter[J]. ACM Transactions on Information Systems, 2020,38(2): 1-24.
|
[12] |
叶俊民, 罗达雄, 陈曙 . 基于短文本情感增强的在线学习者成绩预测方法[J]. 自动化学报, 2020,46(9): 1927-1940.
|
|
YE J M , LUO D X , CHEN S . Short-text sentiment enhanced achievement prediction method for online learners[J]. Acta Automatica Sinica, 2020,46(9): 1927-1940.
|
[13] |
BAHDANAU D , CHO K , BENGIO Y . Neural machine translation by jointly learning to align and translate[J]. arXiv preprint, 2014,arXiv:1409.0473.
|
[14] |
沈继锋, 刘岳, 韦浩 ,等. 基于差分特征注意力机制的无锚框多光谱行人检测算法[J]. 智能科学与技术学报, 2021,3(3): 294-303.
|
|
SHEN J F , LIU Y , WEI H ,et al. Anchor free multispectral pedestrian detection algorithm based on differential feature attention mechanism[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(3): 294-303.
|
[15] |
洪依, 孙成立, 冷严 . 基于超轻量通道注意力的端对端语音增强方法[J]. 智能科学与技术学报, 2021,3(3): 351-358.
|
|
HONG Y , SUN C L , LENG Y . End-to-end speech enhancement based on ultra-lightweight channel attention[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(3): 351-358.
|
[16] |
宋婷, 陈战伟, 杨海峰 . 基于分层注意力网络的方面情感分析[J]. 大数据, 2020,6(5): 82-91.
|
|
SONG T , CHEN Z W , YANG H F . Aspect sentiment analysis based on a hierarchical attention network[J]. Big Data Research, 2020,6(5): 82-91.
|
[17] |
PENNINGTON J , SOCHER R , MANNING C . Glove:global vectors for word representation[C]// Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2014: 1532-1543.
|
[18] |
VASWANI A , SHAZEER N , PARMAR N ,et al. Attention is all you need[J]. arXiv preprint, 2017,arXiv:1706.03762v5.
|
[19] |
曾淦雄, 柯逍 . 基于 3D 卷积的图像序列特征提取与自注意力的车牌识别方法[J]. 智能科学与技术学报, 2021,3(3): 268-279.
|
|
ZENG G X , KE X . 3D convolution-based image sequence feature extraction and self-attention for license plate recognition method[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(3): 268-279.
|
[20] |
HUTTO C , GILBERT E . VADER:a parsimonious rule-based model for sentiment analysis of social media text[C]// Proceedings of the 8th International AAAI Conference on Web and Social Media.[S.l.:s.n.], 2014.
|
[21] |
LEIS A , RONZANO F , MAYER M A ,et al. Detecting signs of depression in tweets in Spanish:behavioral and linguistic analysis[J]. Journal of Medical Internet Research, 2019,21(6): e14199.
|
[22] |
HUSSAIN J , SATTI F A , AFZAL M ,et al. Exploring the dominant features of social media for depression detection[J]. Journal of Information Science, 2020,46(6): 739-759.
|
[23] |
CAVAZOS-REHG P A , KRAUSS M J , SOWLES S ,et al. A content analysis of depression-related Tweets[J]. Computers in Human Behavior, 2016,54: 351-357.
|
[24] |
BENTON A , COPPERSMITH G , DREDZE M . Ethical research protocols for social media health research[C]// Proceedings of the 1st ACL Workshop on Ethics in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2017: 94-102.
|
[25] |
COPPERSMITH G , DREDZE M , HARMAN C . Quantifying mental health signals in twitter[C]// Proceedings of the Workshop on Computational Linguistics and Clinical Psychology:From Linguistic Signal to Clinical Reality. Stroudsburg:Association for Computational Linguistics, 2014: 51-60.
|
[26] |
ZEILER M D . ADADELTA:an adaptive learning rate method[J]. arXiv preprint, 2012,arXiv:1212.5701.
|
[27] |
SRIVASTAVA N , HINTON G E , KRIZHEVSKY A ,et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014,15(1): 1929-1958.
|
[28] |
PEDREGOSA F , VAROQUAUX G , GRAMFORT A ,et al. Scikit-learn:machine learning in Python[J]. Journal of Machine Learning Research, 2012,12(10): 2825-2830.
|
[29] |
SONG X M , NIE L Q , ZHANG L M ,et al. Multiple social network learning and its application in volunteerism tendency prediction[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.[S.l.:s.n.], 2015: 213-222.
|
[30] |
ROLET A , CUTURI M , PEYRé G , . Fast dictionary learning with a smoothed Wasserstein loss[C]// Proceedings of the 18th Artificial Intelligence and Statistics.[S.l.:s.n.], 2016: 630-638.
|
[31] |
CHUNG J , GULCEHRE C , CHO K ,et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint, 2014,arXiv:1412.3555.
|
[32] |
LIU N , LU P , ZHANG W ,et al. Knowledge-aware deep dual networks for text-based mortality prediction[C]// Proceedings of 2019 IEEE 35th International Conference on Data Engineering. Piscataway:IEEE Press, 2019: 1406-1417.
|