大数据 ›› 2018, Vol. 4 ›› Issue (5): 62-79.doi: 10.11959/j.issn.2096-0271.2018051
所属专题: 大数据
王宏志,梁志宇,李建中,高宏
出版日期:
2018-09-15
发布日期:
2018-12-10
作者简介:
王宏志(1978-),男,博士,哈尔滨工业大学计算机科学与技术学院教授,博士生导师,主要研究方向为大数据。|梁志宇(1994-),男,哈尔滨工业大学计算机科学与技术学院硕士生,主要研究方向为大数据。|李建中(1950-),男,哈尔滨工业大学计算机科学与技术学院教授,博士生导师,主要研究方向为大数据、物联网。|高宏(1966-),女,博士,哈尔滨工业大学计算机科学与技术学院教授,博士生导师,主要研究方向为大数据、物联网。
基金资助:
Hongzhi WANG,Zhiyu LIANG,Jianzhong LI,Hong GAO
Online:
2018-09-15
Published:
2018-12-10
Supported by:
摘要:
随着条形码、二维码、RFID、工业传感器、自动控制系统、工业互联网、ERP、CAD/CAM/CAE等信息技术在工业领域的广泛应用,大量与工业生产活动相关的数据被实时采集并存储到企业的信息系统中。对这些数据进行分析,有助于改进生产工艺、提高生产效率、降低生产成本,为实现智能制造奠定基础。因此,工业大数据分析引起了工业界和学术界的广泛关注。模型和算法是大数据分析理论和技术中的两个核心问题。介绍了工业大数据分析的基本概念,综述了几种流行的工业大数据分析模型在工业大数据分析领域的应用情况以及相应求解算法方面的研究成果,并探索了大数据分析模型和算法的未来研究方向。
中图分类号:
王宏志, 梁志宇, 李建中, 高宏. 工业大数据分析综述:模型与算法[J]. 大数据, 2018, 4(5): 62-79.
Hongzhi WANG, Zhiyu LIANG, Jianzhong LI, Hong GAO. Survey on industrial big data analysis:models and algorithms[J]. Big Data Research, 2018, 4(5): 62-79.
[1] | GE.The case for an industrial big data platform:laying the groundwork for the new industrial age[R]. 2013. |
[2] | ZHENG L , ZENG C , LI L ,et al. Applying data mining techniques to address critical process optimization needs in advanced manufacturing[C]// The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 24-27,2014,New York,USA. New York:ACM Press, 2014: 1739-1748. |
[3] | BERKHIN P . A survey of clustering data mining techniques[J]. Grouping Multidimensional Data, 2006,43(1): 25-71. |
[4] | HIPP J , NAKHAEIZADEH G . Algorithms for association rule mining:a general survey and comparison[J]. ACM SIGKDD Explorations Newsletter, 2000,2(1): 58-64. |
[5] | COOLEY R , MOBASHER B , SRIVASTAVA J . Web mining:information and pattern discovery on the world wide web[C]// The 9th International Conference on Tools with Artificial Intelligence,November 3-8,1997,Newport Beach,USA. Washington,DC:IEEE Computer Society, 1997:558. |
[6] | 任磊, 杜一, 马帅 ,等. 大数据可视分析综述[J]. 软件学报, 2014(9): 1909-1936. |
REN L , DU Y , MA S ,et al. Visual analytics towards big data[J]. Journal of Software, 2014(9): 1909-1936. | |
[7] | STEYERBERG E W , JR H F , BORSBOOM G J ,et al. Internal validation of predictive models:efficiency of some procedures for logistic regression analysis[J]. Journal of Clinical Epidemiology, 2001,54(8): 774-781. |
[8] | VYAS R , SHARMA L K , VYAS O P ,et al. Associative classifiers for predictive analytics:comparative performance study[M]. Piscataway: IEEE PressPress, 2008: 289-294. |
[9] | HAAS P J , MAGLIO P P , SELINGER P G ,et al. Data is dead...without what-if models[J]. PVLDB, 2012,4(4): 1486-1489. |
[10] | EVANS J R , LINDNER C H . Business analytics:the next frontier for decision sciences[J]. Decision Line, 2012,43(2):4. |
[11] | 崔妍, 包志强 . 关联规则挖掘综述[J]. 计算机应用研究, 2016,33(2): 330-334. |
CUI Y , BAO Z Q . Survey of association rule mining[J]. Application Research of Computers, 2016,33(2): 330-334. | |
[12] | LIU C Y , SUN Y F . Application of data mining in production quality management[J]. International Symposium on Intelligent Information Technology Application, 2009(2): 284-287. |
[13] | 娄小芳 . 基于模式识别和数据挖掘的铝工业生产节能降耗研究[D]. 长沙:国防科学技术大学, 2010. |
LOU X F . Research on energy saving of the aluminum industrial production based on technologies of pattern recognition and data mining[D]. Changsha:National University of Defense Technology, 2010. | |
[14] | 张健 . 服装制造数据协同与辅助决策系统的研究与设计[D]. 苏州:苏州大学, 2013. |
ZHANG J . Research and design of the garment manufacturing data collaboration and auxiliary decisionmaking system[D]. Suzhou:Soochow University, 2013. | |
[15] | 薛百里 . 基于数据挖掘技术的服装制造标准工时制定方法研究[D]. 苏州:苏州大学, 2015. |
XUE B L . Research on garment manufacturing standard working hour formulation method based on data mining[D]. Suzhou:Soochow University, 2015. | |
[16] | 谢英星 . Apriori算法在模具改模工艺信息处理中的应用[J]. 组合机床与自动化加工技术, 2008(6): 80-83. |
XIE Y X . The application of Apriori algorithm in mould repair process management[J]. Modular Machine Tool& Automatic Manufacturing Technique, 2008(6): 80-83. | |
[17] | AGARD B . Data mining for improvement of product quality[J]. International Journal of Production Research, 2006,44(18-19): 4027-4041. |
[18] | 张亮 . 数据挖掘在机械制造业外购件供应系统的应用[D]. 重庆:重庆大学, 2004. |
ZHANG L . Realization of data mining on machinery enterprise marketing system[D]. Chongqing:Chongqing University, 2004. | |
[19] | 周明 . 基于数据挖掘的制造业采购DSS理论及方法研究[D]. 天津 :天津大学, 2009. |
ZHOU M . Study on theory and method of manufacturing procurement dss based on data mining[D]. Tianjin:Tianjin University, 2009. | |
[20] | 王建良, 杜元胜, 徐建良 . 面向离散制造业数据挖掘技术研究与应用[J]. 微计算机信息, 2007(33): 10-11,21. |
WANG J L , DU Y S , XU J L . Research and application of data mining in intermittent manufacturing industry[J]. Control &Automation, 2007(33): 10-11,21. | |
[21] | 李烨 . 数据挖掘技术在卡车制造商的客户价值分析应用研究[D]. 柳州:广西科技大学, 2013. |
LI Y . The research for the application of data mining technology in the customer value analysis of the trunk manufactures[D]. Liuzhou:Guangxi University of Technology, 2013. | |
[22] | 汪奇, 黄洪, 郑晓群 . 笔记本电脑BTO生产计划中关联规则挖掘的应用研究[J]. 商场现代化, 2007(36): 30-31. |
WANG Q , HUANG H , ZHENG X Q . The application research of association rules mining in BTO production plan of laptop[J]. Market Modernization, 2007(36): 30-31. | |
[23] | 黄亦弢 . 钟表供应链管理中智能物料表研究[D]. 广州:广东工业大学, 2006. |
HUANG Y T . Research on intelligent bill of material in the supply chain management of horologe industry[D]. Guangzhou:Guangdong University of Technology, 2006. | |
[24] | 石慧 . 基于汽车服务业的服务挖掘[J]. 上海汽车, 2007(7): 28-30. |
SHI H . Service "mining" based on automobile service industry[J]. Shanghai Auto, 2007(7): 28-30. | |
[25] | 陈嵩 . 通信设备制造业CRM中的数据挖掘研究[D]. 武汉:武汉理工大学, 2008. |
CHEN S . Data mining research in communication equipment manufacturing industry CRM[D]. Wuhan:Wuhan University of Technology, 2008. | |
[26] | CHEN W C , TSENG S S , WANG C Y . A novel manufacturing defect detection method using data mining approach[C]// Innovations in Applied Artificial Intelligence,International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,IEA/AIE 2004,May 17-20,2004,Ottawa,Canada. Heidelberg:Springer, 2004: 77-86. |
[27] | IFLIKLI C , KAHYA , ZYIRMIDOKUZ E . Implementing a data mining solution for enhancing carpet manufacturing productivity[J]. Knowledge-Based Systems, 2010,23(8): 783-788. |
[28] | LI M , FENG S , SETHI I K ,et al. Mining production data with neural network&CART[C]// The 3r d IEEE International Conference on Data Mining,November 19-22,Melbourne,USA. Piscataway:IEEE Press, 2003: 783-788. |
[29] | 宋旭东, 刘晓冰, 程晓兰 ,等. 钢铁企业生产成本关键工序数据挖掘应用研究[J]. 计算机工程与应用, 2008(28): 184-186,195. |
SONG X D , LIU X B , CHENG X L ,et al. Research on production cost key processes data mining for iron & steel enterprises[J]. Computer Engineering and Applications, 2008(28): 184-186,195. | |
[30] | 郭龙波 . 基于数据挖掘方法的冷轧表面质量缺陷分析[D]. 马鞍山:安徽工业大学, 2012. |
GUO L B . The defect analysis for the surfacial quality of the cooling system based on data mining technology[D]. Ma'anshan:Anhui University of Technology, 2012. | |
[31] | 王诗 . 基于数据挖掘技术的矿用提升机故障预警系统的研究[D]. 北京 :北京邮电大学, 2009. |
WANG S . Research on fault diagnosis and safety alarm[D]. Beijing:Beijing University of Posts and Telecommunications, 2009. | |
[32] | 王成龙 . 基于数据挖掘技术的生产调度问题研究[D]. 杭州:浙江大学, 2015. |
WANG C L . Research on data mining based production scheduling[D]. Hangzhou:Zhejiang University, 2015. | |
[33] | 徐玉婷 . MES车间生产调度系统及其数据挖掘方法的研究[D]. 南京:南京航空航天大学, 2007. |
XU Y T . Research on MES workshop scheduling system and its data mining method[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007. | |
[34] | 刘娜 . 纺织领域中数据挖掘技术的应用研究[D]. 大连:大连海事大学, 2004. |
LIU N . Research on the application of data mining technology in textile area[D]. Dalian:Dalian Maritime University, 2004. | |
[35] | 郭玲 . 信息时代汽车制造业协同采购策略研究[D]. 长春:吉林大学, 2006. |
GUO L . Study on strategy of collaborative procurement business in auto manufacturing in information times[D]. Changchun:Jilin University, 2006. | |
[36] | 陈力 . 大数据环境下集团企业的精细化营销体系设计方法与实现[D]. 杭州:浙江理工大学, 2016. |
CHEN L . The implementation and design method of precise marketing system for enterprise under big data environment[D]. Hangzhou:Zhejiang Sci-Tech University, 2016. | |
[37] | 刘菲 . 基于决策树技术的忠诚客户挖掘研究[D]. 阜新:辽宁工程技术大学, 2009. |
LIU F . Research of loyal customer mining based on decision tree technology[D]. Fuxin:Liaoning Technical University, 2009. | |
[38] | 沈小淦 . 制造业售后服务系统的研究与开发[D]. 西安 :西安电子科技大学, 2012. |
SHEN X G . Research and development of manufacturing after service system[D]. Xi’an:Xidian University, 2012. | |
[39] | 陈思行, 陈保钢 . 基于制造业的C R M的客户流失分析[J]. 建设机械技术与管理, 2008(3): 106-109. |
CHEN S X , CHEN B G . Analysis on the loss of clients based on manufacturing industry CRM[J]. Construction Machinery Technology & Management, 2008(3): 106-109. | |
[40] | 鲁钊, 陈世平 . 基于ID3算法的机械制造业决策应用[J]. 计算机应用, 2011(11): 3087-3090. |
LU Z , CHEN S P . Application of machinery manufacturing decisionmaking based on ID3 algorithm[J]. Journal of Computer Applications, 2011(11): 3087-3090. | |
[41] | 骆自超 . 基于数据挖掘的发动机缸盖燃烧室容积制造误差控制方法研究[D]. 上海:上海交通大学, 2014. |
LUO Z C . The construction of optimal control scheme of volume of automotive cylinder head combustion chamber based on data mining techniques[D]. Shanghai:Shanghai Jiao Tong University, 2014. | |
[42] | MOGHIMI M , SARAEE M H , BAGHERI A . Modeling of batch annealing process using data mining techniques for cold rolled steel sheets[C]// The 1st International Workshop on Data Mining for Service and Maintenance,August 21,2011,San Diego,USA. New York:ACM Press, 2011: 18-22. |
[43] | SHI X , SCHILLINGS P , BOYD D . Applying artificial neural networks and virtual experimental design to quality improvement of two industrial processes[J]. International Journal of Production Research, 2004,42(1): 101-118. |
[44] | 刘立强 . 企业能源管理系统的数据整合与处理[D]. 北京 :北京交通大学, 2014. |
LIU L Q . Data integration and processing in the enterprises energy management system[D]. Beijing:Beijing Jiaotong University, 2014. | |
[45] | 吴波 . 造纸过程能源管理系统中数据挖掘与能耗预测方法的研究[D]. 广州:华南理工大学, 2012. |
WU B . Study on data mining and prediction method of energy consumption used in energy management system of paper process[D]. Guangzhou:South China University of Technology, 2012. | |
[46] | HONG S J , LIM W Y , CHEONG T ,et al. Fault detection and classification in plasma etch equipment for semiconductor manufacturing $e$-diagnostics[J]. IEEE Transactions on Semiconductor Manufacturing, 2012,25(1): 83-93. |
[47] | 罗洪波 . 汽车售后服务故障件管理及数据挖掘技术应用研究[D]. 成都:西南交通大学, 2008. |
LUO H B . The invalid parts management of automobile in after-sales service and application research on data mining[D]. Chengdu:Southwest Jiaotong University, 2008. | |
[48] | 范卿 . 工程机械远程监控系统研究[D]. 长沙:湖南大学, 2011. |
FAN Q . Research on remote monitoring system for construction machinery[D]. Changsha:Hunan University, 2011. | |
[49] | 于欣 . 基于数据挖掘的物流设备隐性故障预警模型研究[D]. 秦皇岛:燕山大学, 2014. |
YU X . Research of logistics equipment hidden failure warning model based on data mining[D]. Qinhuangdao:Yanshan University, 2014. | |
[50] | 孙宜然, 赵嵩正, 徐伟 . 面向供应链的制造业库存决策支持系统的分析与设计[J]. 工业工程, 2006(3): 75-79. |
SUN Y R , ZHAO A Z , XU W . Supply chain oriented decision-making support system for manufacturing inventory management[J]. Industrial Engineering Journal, 2006(3): 75-79. | |
[51] | 陈承贵 . 基于数据挖掘技术仓库管理系统的应用与研究[D]. 成都:电子科技大学, 2009. |
CHEN C G . Application and research of warehouse management system based on data mining technology[D]. Chengdu:University of Electronic Science and Technology of China, 2009. | |
[52] | 文小敏, 袁清珂, 罗小美 . ERP决策支持系统中采购数据仓库的构建与应用研究[J]. 现代机械, 2005(2): 27-29. |
WEN X M , YUAN Q H , LUO X M . The building and application of purchase data warehouse in DSS of ERP[J]. Modern Machinery, 2005(2): 27-29. | |
[53] | 桂卫华, 黄泰松, 朱爽 . 智能综合原料库存优化系统及应用[J]. 中南工业大学学报(自然科学版), 2001(5): 536-540. |
GUI W H , HUANG T S , ZHU S . Intelligent integrated raw material storage optimization system and application[J]. Journal of Central South University of Technology(Natural Science), 2001(5): 536-540. | |
[54] | 周志刚 . 灰色系统理论与人工神经网络融合的时序数据挖掘预测技术及应用[D]. 成都:成都理工大学, 2006. |
ZHOU Z G . The fusion technology between grey system theories and neural networks and its application in prediction for time sequence[D]. Chengdu:Chengdu University of Technology, 2006. | |
[55] | 王鹏鹏, 廖小平, 邓建新 . ERP环境下销售决策支持的研究与实现[J]. 机械设计与制造, 2008(5): 219-221. |
WANG P P , LIAO X P , DENG J X . Research and implementation of sales decision support in ERP environment[J]. Machinery Design & Manufacture, 2008(5): 219-221. | |
[56] | 李霄林 . 面向摩托车智能设计的数据挖掘系统研究与应用[D]. 重庆:重庆大学, 2006. |
LI X L . The research and application for the data mining system of motorcycle intelligent design[D]. Chongqing:Chongqing University, 2006. | |
[57] | AYE T T , YANG F , WANG L ,et al. Data driven framework for degraded pogo pin detection in semiconductor manufacturing[C]// The 10th IEEE Conference on Industrial Electronics and Applications,June 15-17,2015,Oakland,NowZealand. Pisoataway:IEEE Press, 2015. |
[58] | 常建涛, 仇原鹰, 李申 ,等. 生产计划与调度中的次年产量预测方法[J]. 计算机集成制造系统, 2013(7): 1648-1654. |
CHANG J T , QIU Y Y , LI S ,et al. Output prediction approach of production planning and scheduling in the next year[J]. Computer Integrated Manufacturing Systems, 2013(7): 1648-1654. | |
[59] | 梁琦, 陆剑宝 . 传统制造业集群的生产性服务需求——广东、山西两地4个制造业集群样本的考察[J]. 管理评论, 2014(11): 169-181. |
LIANG Q , LU J B . The producer services demand of traditional manufacturing clusters:an investigate of four manufacturing clusters samples in Guangdong and Shanxi[J]. Management Review, 2014(11): 169-181. | |
[60] | 江小辉, 赵建民, 朱信忠 . 商业智能在流行饰品制造业中的应用研究[J]. 信息技术, 2008(6): 33-35. |
JIANG X H , ZHAO J M , ZHU X Z . Application research of business intelligence in the fashion jewelry manufacture industry[J]. Information Technology, 2008(6): 33-35. | |
[61] | 张玉东 . PG炼钢厂MES系统数据挖掘的设计与开发[D]. 成都:电子科技大学, 2011. |
ZHANG Y D . Design and development of data mining for MES system of PG steelmaking plant[D]. Chengdu:University of Electronic Science and Technology of China, 2011. | |
[62] | 肖溱鸽 . 基于数据分析的数控加工工艺参数能效优化方法研究[D]. 重庆:重庆大学, 2016. |
XIAO Z G . Research on data analysis based process parameters optimization method for energy efficiency in CNC machining[D]. Chongqing:Chongqing University, 2016. | |
[63] | URTUBIA A , PéREZ-CORREA J R , SOTO A ,et al. Using data mining techniques to predict industrial wine problem fermentations[J]. Food Control, 2007,18(12): 1512-1517. |
[64] | 宋辉 . 聚类分析系统的设计与实现及在工业中的应用[D]. 天津:天津科技大学, 2004. |
SONG H . Design and implement of clustering analysis system and its application in industry[D]. Tianjin:Tianjin University of Science&Technology, 2004. | |
[65] | 武霞 . Hadoop平台下基于聚类和关联规则算法的工程车辆故障预测研究[D]. 太原:太原科技大学, 2015. |
WU X . Research on fault prediction of engineering vehicles based on clustering and association rules algorithm under Hadoop platform[D]. Taiyuan:Taiyuan University of Science and Technology, 2015. | |
[66] | 阮志林 . 基于大批量定制模式的管理信息系统的研究及其应用[D]. 长沙:国防科学技术大学, 2005. |
RUAN Z L . Research & application of management information system based on mass customization[D]. Changsha:National University of Defense Technology, 2005. | |
[67] | AGRAWAL R S R , . Fast algorithm for mining association rules[C]// The 20th International Conference on Very Large Databases (VLDB),September 12-15,1994,Santiago de Chile,Chile. Chile:Morgan Kaufmann Publishers Inc, 1994: 487-499. |
[68] | MANNILA H , TOIVONEN H , VERKAMO A I . Efficient algorithmsfor discovering association rules[C]// The 3rd International Conference on Knowledge Discovery and Data Mining,July 31-August 1,1994,Seattle,USA . Palo Alto:AAAI Press, 1994: 181-192. |
[69] | PARK J S , CHEN M S , YU P S . An effective hash-based algorithm for mining association rules[C]// The 1995 ACM SIGMOD International Conference on Management of Data,May 22-25,1995,San Jose,USA. New York:ACM Press, 1995: 175-186. |
[70] | SAVASERE A , OMIECINSKI E R , NAVATHE S B . An efficient algorithm for mining association rules in large databases[C]// The 21th International Conference on Very Large Data Bases,September 11-15,1995,Zurich,Switzerland.San Francisco:Morgan Kaufmann Publishers Inc. , 1995: 432-444. |
[71] | TOIVONEN H , . Sampling large databases for association rules[C]// The 22th International Conference on Very Large Data Bases,September 3-6,1996,Mumbai,India.San Francisco:Morgan Kaufmann Publishers Inc. , 1996: 134-145. |
[72] | AGRAWAL R , SHAFER J C . Parallel mining of association rules[J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8(6): 962-969. |
[73] | HAN J , PEI J , YIN Y . Mining frequent patterns without candidate generation[C]// The 2000 ACM SIGMOD International Conference on Management of Data,May 15-18,2000,Dallas,USA. New York:ACM Press, 2000: 1-12. |
[74] | QUINLAN J R . Induction of decision trees[J]. Machine learning, 1986,1(1): 81-106. |
[75] | QUINLAN J R . C4.5:programs for machine learning[M]. San Francisco : Morgan KaufmannPress, 1993. |
[76] | BREIMAN L , FRIEDMAN J , STONE C J ,et al. Classification and regression trees[M]. Boca Raton : CRC PressPress, 1984. |
[77] | ROSENBLATT F . The perceptron:a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958,65(6): 386-408. |
[78] | ROSENBLATT F . Principles of neurodynamics:perceptrons and the theory of brain mechanisms[M]. New York: Spartan BooksPress, 1962:705. |
[79] | WIDROW B , HOFF M E . Adaptive switching circuits.1960 IRE WESCON Convention Record[R]. 1960. |
[80] | WERBOS P . Beyond regression:new tools for prediction and analysis in the behavioral science[J]. Ph.D.Dissertation Harvard University, 1974,29(18): 65-78. |
[81] | RUMELHART D E , MCCLELLAND J L , GROUP C P . Parallel distributed processing:explorations in the microstructure of cognition,vol.2:psychological and biological models[J]. Language, 1986,63(4): 45-76. |
[82] | MITCHELL T M . Machine learning[M]. Burr Ridge,IL: McGraw HillPress, 1997: 870-877. |
[83] | BARRON A R . Complexity regularization with application to artificial neural networks[J]. Nonparametric Functional Estimation and Related Topics, 1991,5(4): 561-576. |
[84] | AARTS E H , KORST J . Simulated annealing and Boltzmann machines[M]// A stochastic approach to combinatorial optimization. New York:Wiley, 1989. |
[85] | YAO X . Evolving artificial neural networks[J]. Proceedings of the IEEE, 1999,87(9): 1423-1447. |
[86] | JACOBS R A . Increased rates of convergence through learning rate adaptation[J]. Neural Networks, 1987,1(4): 295-307. |
[87] | KOHONEN T . Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 1982,43(1): 59-69. |
[88] | CARPENTER G A , GROSSBERG S . A massively parallel architecture for a self-organizing neural pattern recognition machine[J]. Computer Vision,Graphics,and Image Processing, 1987,37(1): 54-115. |
[89] | HINTON G E . A practical guide to training restricted Boltzmann machines[M]. Heidelberg: SpringerPress, 2010: 599-619. |
[90] | ZHANG T , RAMAKRISHNAN R , LIVNY M . BIRCH:an efficient data clustering method for very large databases[C]// ACM SIGMOD International Conference on Management of Data, 1996: 103-114. |
[91] | GUHA S , RASTOGI R , SHIM K . CURE:an efficient clustering algorithm for large databases[C]// The 1998 ACM SIGMOD International Conference on Management of Data,June 1-4,1998,Seattle,USA.New York:Acm Press, 1998 73-84. |
[92] | GUHA S , RASTOGI R , SHIM K . ROCK:a robust clustering algorithm for categorical attributes[C]// Th e 15th International Conference on Data Engineering,March 23-26,1999,Sydney,Australia. Piscataway:IEEE Press, 1999: 512-521. |
[93] | KARYPIS G , HAN E-H , KUMAR V . Chameleon:hierarchical clustering using dynamic modeling[J]. Computer, 1999,32(8): 68-75. |
[94] | FORGY E W . Cluster analysis of multivariate data:efficiency versus interpretability of classifications[J]. Biometrics, 1965,21(3): 768-769. |
[95] | HUANG Z . Extensions to the k-means algorithm for clustering large data sets with categorical values[J]. Data Mining &Knowledge Discovery, 1998,2(3): 283-304. |
[96] | GIROLAMI M . Mercer kernel-based clustering in feature space[J]. IEEE Transactions on Neural Networks, 2002,13(3): 780-784. |
[97] | ARTHUR D , VASSILVITSKII S . k-means++:the advantages of careful seeding[C]// The 18th Acm-Siam Symposium on Discrete Algorithms,January 7-9,2007,New Orleans,Louisiana. Philadelphia:Society for Industrial and Applied Mathematics, 2007: 1027-1035. |
[98] | KAUFMAN L , ROUSSEEUW P . Clustering by means of medoids[M]. [Sl.]. North-HollandPress, 1987. |
[99] | ESTER M , KRIEGEL H P , XU X . A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]// The 2nd International Conference on Knowledge Discovery and Data Mining,August 2-4,1996,Portland,USA . Palo Alto:AAAI Press, 1996: 226-231. |
[100] | ANKERST M , BREUNIG M M , KRIEGEL H P . OPTICS:ordering points to identify the clustering structure[J]. ACM SIGMOD Record, 1999,28(2): 49-60. |
[101] | ERT?Z L , STEINBACH M , KUMAR V . A new shared nearest neighbor clustering algorithm and its applications[C]// Th e Workshop on Clustering High Dimensional Data & ITS Applications at Siam International Conference on Data Mining,April 11-13,2002,Arlington,Virginia.[S.l.:s.n]. 2002. |
[102] | WANG W , YANG J , MUNTZ R R . STING:a statistical information grid approach to spatial data mining[C]// The 23rd International Conference on Very Large Data Bases,August 25-29,1997,Athens,Greece.San Francisco:Morgan Kaufmann Publishers Inc. , 1997: 186-195. |
[103] | WANG W , YANG J , MUNTZ R . STING+:an approach to active spatial data mining[C]// The 15th International Conference on Data Engineering,March 23-26,1999,Sydney,Australia. Washington,DC:IEEE Computer Society, 1999: 116-125. |
[104] | AGRAWAL R , GEHRKE J , GUNOPULOS D ,et al. Automatic subspace clustering of high dimensional data for data mining applications[M]. New York: ACM PressPress, 1998: 94-105. |
[105] | SHEIKHOLESLAMI G , CHATTERJEE S , ZHANG A . Wavecluster:a multiresolution clustering approach for very large spatial databases[C]// The 24rd International Conference on Very Large Data Bases,August 24-27,1998,New York,USA. San Francisco:Margan Kaufmann, 1998: 428-439. |
[1] | 李婧文, 李雅文. 算法应用风险与治理研究[J]. 大数据, 2023, 9(3): 140-149. |
[2] | 冯旭, 曹浩, 胡杨, 王秀芹, 张皓翔, 凌端新. 我国中小企业数字化发展评价与区域差异研究[J]. 大数据, 2023, 9(3): 168-180. |
[3] | 梅宏, 杜小勇, 金海, 程学旗, 柴云鹏, 石宣化, 靳小龙, 王亚沙, 刘驰. 大数据技术前瞻[J]. 大数据, 2023, 9(1): 1-20. |
[4] | 韩立帆, 季紫荆, 陈子睿, 王鑫. 数字人文视域下面向历史古籍的信息抽取方法研究[J]. 大数据, 2022, 8(6): 26-39. |
[5] | 戴筠. 基于双曲空间图嵌入的科研热点预测[J]. 大数据, 2022, 8(6): 94-104. |
[6] | 崔雨萌, 王靖亚, 闫尚义, 陶知众. 基于深度学习的警情记录关键信息自动抽取[J]. 大数据, 2022, 8(6): 127-142. |
[7] | 尹虹舒, 周旭华, 周文君. 纵向联邦线性模型在线推理过程中成员推断攻击的隐私保护研究[J]. 大数据, 2022, 8(5): 45-54. |
[8] | 关海山, 郑玉龙, 魏笔凡, 张泽民, 岳浩, 师斌, 董博. 税收优惠政策关键要素抽取与可视化分析[J]. 大数据, 2022, 8(5): 106-123. |
[9] | 郑婷一, 庞亮, 靳小龙. 平台经济中的数据与算法安全[J]. 大数据, 2022, 8(4): 56-66. |
[10] | 肖晓霞, 刘明婷, 杨冯天赐, 刘鉴建县, 杨阳, 石月. 基于NLP的中医医案文本快速结构化方法[J]. 大数据, 2022, 8(3): 128-139. |
[11] | 潘小多, 李新, 冉有华, 郭学军. 开放科学背景下的科学数据开放共享:国家青藏高原科学数据中心的实践[J]. 大数据, 2022, 8(1): 113-120. |
[12] | 张宝华, 张华平, 厉铁帅, 商建云. 基于多输入模型及句法结构的中文评论情感分析方法[J]. 大数据, 2021, 7(6): 41-52. |
[13] | 刘枬, 郝雪镜, 陈俞宏. 大数据定价方法的国内外研究综述及对比分析[J]. 大数据, 2021, 7(6): 89-102. |
[14] | 纪颖波, 赵子豪, 姚福义. 基于ISM的大数据在建筑领域中的应用障碍分析[J]. 大数据, 2021, 7(6): 128-137. |
[15] | 辛保江, 李德文, 王兰兰. 企业电力征信大数据价值挖掘与应用[J]. 大数据, 2021, 7(6): 138-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|