[1] |
LI R L , YANG S , ROSS D A ,et al. AI choreographer:music conditioned 3D dance generation with AIST++[C]// Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE Press, 2021.
|
[2] |
LI S Y , YU W J , GU T P ,et al. Bailando:3D dance generation by actor-critic GPT with choreographic memory[C]// Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2022: 11040-11049.
|
[3] |
AHN H , KIM J , KIM K ,et al. Generative autoregressive networks for 3D dancing move synthesis from music[J]. IEEE Robotics and Automation Letters, 2020,5(2): 3501-3508.
|
[4] |
ALEMI O , FRAN?OISE J , PASQUIER P . GrooveNet:real-time music-driven dance movement generation using artificial neural networks[C]// Proceedings of the 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2017.
|
[5] |
GINOSAR S , BAR A , KOHAVI G ,et al. Learning individual styles of conversational gesture[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 3492-3501.
|
[6] |
KAO H K , SU L . Temporally guided music-to-body-movement generation[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York:ACM Press, 2020: 147-155.
|
[7] |
REN X C , LI H R , HUANG Z J ,et al. Self-supervised dance video synthesis conditioned on music[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York:ACM Press, 2020: 46-54.
|
[8] |
RAZAVI A , OORD A V D , VINYALS O . Generating diverse high-fidelity images with VQ-VAE-2[J]. arXiv preprint, 2019,arXiv:1906.00446.
|
[9] |
KOVAR L , GLEICHER M , PIGHIN F . Motion graphs[C]// Proceedings of ACM SIGGRAPH 2008. New York:ACM Press, 2008: 1-10.
|
[10] |
LEE J , SHIN S Y . A hierarchical approach to interactive motion editing for humanlike figures[C]// Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques.[S.l.:s.n.], 1999: 39-48.
|
[11] |
PAPADOURAKIS A G. Motion capture and analysis:US20170348561A1[P]. 2017-12-07.
|
[12] |
HOLDEN D , SAITO J , KOMURA T . A deep learning framework for character motion synthesis and editing[J]. ACM Transactions on Graphics, 2016,35(4): 1-11.
|
[13] |
HOLDEN D , SAITO J , KOMURA T ,et al. Learning motion manifolds with convolutional autoencoders[C]// Proceedings of SIGGRAPH Asia 2015 Technical Briefs. New York:ACM Press, 2015: 1-4.
|
[14] |
HERNANDEZ A , GALL J , MORENO F . Human motion prediction via spatiotemporal inpainting[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 7133-7142.
|
[15] |
LOPER M , MAHMOOD N , ROMERO J ,et al. Smpl[J]. ACM Transactions on Graphics, 2015,34(6): 1-16.
|
[16] |
OORD A V D , VINYALS O , Kavukcuoglu K . Neural discrete representation learning[J]. arXiv preprint, 2017,arXiv:1711.00937.
|
[17] |
LEE H Y , YANG X D , LIU M Y ,et al. Dancing to music[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York:ACM Press, 2019: 3586-3596.
|
[18] |
LI B Y , ZHAO Y C , SHI Z L ,et al. DanceFormer:music conditioned 3D dance generation with parametric motion transformer[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022,36(2): 1272-1279.
|
[19] |
CHEN K , TAN Z P , LEI J ,et al. Choreomaster:choreography-oriented music-driven dance synthesis[J]. ACM Transactions on Graphics, 2021,40(4): 1-13.
|
[20] |
FERREIRA J P , COUTINHO T M , GOMES T L ,et al. Learning to dance:a graph convolutional adversarial network to generate realistic dance motions from audio[J]. Computers & Graphics, 2021,94(Feb.): 11-21.
|
[21] |
TANG T R , JIA J , MAO H Y . Dance with melody:an LSTM-autoencoder approach to music-oriented dance synthesis[C]// Proceedings of the 26th ACM international conference on Multimedia. New York:ACM Press, 2018: 1598-1606.
|
[22] |
WEST D B . Introduction to graph theory[M]// Discrete mathematics in statistical physics. Berlin: Springer, 2001.
|
[23] |
YAN W , ZHANG Y Z , ABBEEL P ,et al. VideoGPT:video generation using VQVAE and transformers[J]. arXiv preprint, 2021,arXiv:2104.10157.
|
[24] |
CHEN X L , HE K M . Exploring simple Siamese representation learning[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2021.
|
[25] |
JIN Y H , ZHANG J K , LI M J ,et al. Towards the automatic anime characters creation with generative adversarial networks[J]. arXiv preprint, 2017,arXiv:1708.05509.
|
[26] |
VASWANI A , SHAZEER N , PARMAR N ,et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM Press, 2017: 6000-6010.
|
[27] |
ZHANG X J , XU Y , YANG S ,et al. Dance generation with style embedding:learning and transferring latent representations of dance styles[J]. arXiv preprint, 2021,arXiv:2104.14802.
|
[28] |
KINGMA D P , BA J . Adam:a method for stochastic optimization[C]// Proceedings of the 3rd International Conference for Learning Representations.[S.l.:s.n.], 2015.
|
[29] |
HEUSEL M , RAMSAUER H , UNTERTHINER T ,et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[J]. arXiv preprint, 2017,arXiv:1706.08500.
|
[30] |
WON D G A J . fairmotion - tools to load,process and visualize motion capture data[Z]. 2020.
|
[31] |
MüLLER M , R?DER T , CLAUSEN M . Efficient content-based retrieval of motion capture data[C]// Proceedings of ACM SIGGRAPH 2005. New York:ACM Press, 2005: 677-685.
|
[32] |
LI J M , YIN Y H , CHU H ,et al. Learning to generate diverse dance motions with transformer[J]. arXiv preprint, 2020,arXiv:2008.08171.
|
[33] |
ZHUANG W L , WANG C Y , CHAI J X ,et al. Music2Dance:DanceNet for music-driven dance generation[J]. ACM Transactions on Multimedia Computing,Communications,and Applications, 2022,18(2): 1-21.
|
[34] |
HUANG Y H , ZHANG J J , LIU S Y ,et al. Genre-conditioned long-term 3D dance generation driven by music[C]// Proceedings of 2022 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE Press, 2022: 4858-4862.
|