[1] |
DWORK C , MCSHERRY F , NISSIM K ,et al. Calibrating noise to sensitivity in private data analysis[M]// Theory of cryptography. Heidelberg: Springer, 2006: 265-284.
|
[2] |
BITTAU A , ERLINGSSON ú , MANIATIS P , et al . Prochlo:strong privacy for analytics in the crowd[C]// Proceedings of the 26th Symposium on Operating Systems Principles. New York:ACM, 2017: 441-459.
|
[3] |
BALLE B , BELL J , GASCóN A , et al . The privacy blanket of the shuffle model[C]// Proceedings of Annual International Cryptology Conference. Cham:Springer, 2019: 638-667.
|
[4] |
CHEU A , SMITH A , ULLMAN J ,et al. Distributed differential privacy via shuffling[C]// Proceedings of 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Darmstadt:Springer, 2019: 375-403.
|
[5] |
ERLINGSSON ú , FELDMAN V , MIRONOV I ,et al. Amplification by shuffling:from local to central differential privacy via anonymity[C]// Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. New York:ACM, 2019: 2468-2479.
|
[6] |
WANG T , DING B , XU M ,et al. Improving utility and security of the shuffler-based differential privacy[EB]. arXiv preprint, 2019.
|
[7] |
ZHENG Z Z , PENG Y Q , WU F ,et al. Trading data in the crowd:profitdriven data acquisition for mobile crowdsensing[J]. IEEE Journal on Selected Areas in Communications, 2017,35(2): 486-501.
|
[8] |
ZHENG Z Z , PENG Y Q , WU F ,et al. ARETE:on designing joint online pricing and reward sharing mechanisms for mobile data markets[J]. IEEE Transactions on Mobile Computing, 2020,19(4): 769-787.
|
[9] |
GAI K K , WU Y L , ZHU L H ,et al. Differential privacy-based blockchain for industrial Internet-of-things[J]. IEEE Transactions on Industrial Informatics, 2020,16(6): 4156-4165.
|
[10] |
LIU Z W , HU C Q , XIA H ,et al. SPDTS:a differential privacy-based blockchain scheme for secure power data trading[J]. IEEE Transactions on Network and Service Management, 2022,19(4): 5196-5207.
|
[11] |
FOTIOU N , PITTARAS I , SIRIS V A ,et al. A privacy-preserving statistics marketplace using local differential privacy and blockchain:an application to smart-grid measurements sharing[J]. Blockchain:Research and Applications, 2021,2(1): 100022.
|
[12] |
ERLINGSSON ú , PIHUR V , KOROLOVA A . RAPPOR:randomized aggregatable privacy-preserving ordinal response[C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM, 2014: 1054-1067.
|
[13] |
NAKAMOTO S . Bitcoin:a peer-to-peer electronic cash system[J]. Decentralized Business Review, 2008:21260.
|
[14] |
李懿, 王劲松, 张洪玮 . 基于区块链与函数加密的隐私数据安全共享模型研究[J]. 大数据, 2022,8(5): 33-44.
|
|
LI Y , WANG J S , ZHANG H W . Research on privacy data security sharing scheme based on blockchain and function encryption[J]. Big Data Research, 2022,8(5): 33-44.
|
[15] |
WARNER S L . Randomized response:a survey technique for eliminating evasive answer bias[J]. Journal of the American Statistical Association, 1965,60(309): 63-66.
|
[16] |
LAUR S , WILLEMSON J , ZHANG B S . Round-efficient oblivious database manipulation[C]// Proceedings of the 14th International Conference on Information Security. New York:ACM, 2011: 262-277.
|
[17] |
ACHARYA J , SUN Z , ZHANG H ,et al. Hadamard response:estimating distributions privately,efficiently,and with little communication[EB]. arXiv preprint, 2018,arXiv:1802.04705.
|