[1] |
BlackBerry. Global threat intelligence report[R]. 2023-11.
|
[2] |
HAN W J , XUE J F , WANG Y ,et al. MalDAE:detecting and explaining malware based on correlation and fusion of static and dynamic characteristics[J]. Computers & Security, 2019,83: 208-233.
|
[3] |
KORCZYNSKI D , YIN H . Capturing malware propagations with code injections and code-reuse attacks[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017: 1691-1708.
|
[4] |
RIZVI S K J , ASLAM W , SHAHZAD M ,et al. PROUD-MAL:static analysis-based progressive framework for deep unsupervised malware classification of windows portable executable[J]. Complex& Intelligent Systems, 2022,(2022): 1-13.
|
[5] |
JOHNSON S , GOWTHAM R , NAIR A R . Ensemble model ransomware classification:a static analysis-based approach[M]// Inventive Computation and Information Technologies: Proceedings of ICICIT 2021. 2021: 153-167.
|
[6] |
LOI N , BORILE C , UCCI D . Towards an automated pipeline for detecting and classifying malware through machine learning[J]. ArXiv Preprint arXiv:2106.05625, 2021.
|
[7] |
BARBI S , BARBIERI F , MARINELLI S ,et al. Phase change material-sand mixtures for distributed latent heat thermal energy storage:Interaction and performance analysis[J]. Renewable Energy, 2021,169: 1066-1076.
|
[8] |
CHANAJITT R , PFAHRINGER B , GOMES H M ,et al. Multiclass malware classification using either static opcodes or dynamic API calls[C]// Proceedings of Australasian Joint Conference on Artificial Intelligence. 2022: 427-441.
|
[9] |
JING C , WU Y , CUI C Y . Ensemble dynamic behavior detection method for adversarial malware[J]. Future Generation Computer Systems, 2022,130: 193-206.
|
[10] |
LI C , LV Q J , LI N ,et al. A novel deep framework for dynamic malware detection based on API sequence intrinsic features[J]. Computers & Security, 2022,116:102686.
|
[11] |
AFIANIAN A , NIKSEFAT S , SADEGHIYAN B ,et al. Malware dynamic analysis evasion techniques:a survey[J]. ACM Computing Surveys (CSUR), 2019,52(6): 1-28.
|
[12] |
LEBBIE M , PRABHU S R , AGRAWAL A K . Comparative analysis of dynamic malware analysis tools[C]// Proceedings of the International Conference on Paradigms of Communication,Computing and Data Sciences:PCCDS 2021. 2021: 359-368.
|
[13] |
GAO X W , HU C Z , SHAN C ,et al. Malware classification for the cloud via semi-supervised transfer learning[J]. Journal of Information Security and Applications, 2020,55:102661.
|
[14] |
GIBERT D , MATEU C , PLANES J . A hierarchical convolutional neural network for malware classification[C]// Proceedings of 2019 International Joint Conference on Neural Networks (IJCNN). 2019: 1-8.
|
[15] |
DU J , RAZA S H , AHMAD M ,et al. Digital forensics as advanced ransomware pre-attack detection algorithm for endpoint data protection[J]. Security and Communication Networks, 2022,(2022): 1-16.
|
[16] |
KIM T G , KANG B J , BHO M ,et al. A multimodal deep learning method for android malware detection using various features[J]. IEEE Transactions on Information Forensics and Security, 2018,14(3): 773-788.
|
[17] |
GIBERT D , MATEU C , PLANES J . HYDRA:a multimodal deep learning framework for malware classification[J]. Computers & Security, 2020,95: 101873.
|
[18] |
GIBERT D , MATEU C , PLANES J ,et al. Using convolutional neural networks for classification of malware represented as images[J]. Journal of Computer Virology and Hacking Techniques, 2019,(15): 15-28.
|
[19] |
NARAYANAN B N , DJANEYE-BOUNDJOU O , KEBEDE T M . Performance analysis of machine learning and pattern recognition algorithms for malware classification[C]// Proceedings of 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS). 2016: 338-342.
|
[20] |
WOJNOWICZ M , CHISHOLM G , WOLFF M ,et al. Wavelet decomposition of software entropy reveals symptoms of malicious code[J]. Journal of Innovation in Digital Ecosystems, 2016,3(2): 130-140.
|
[21] |
GIBERT D , MATEU C , PLANES J ,et al. Classification of malware by using structural entropy on convolutional neural networks[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2018,32(1).
|
[22] |
RAFF E , BARKER J , SYLVESTER J ,et al. Malware detection by eating a whole exe[C]// Proceedings of Workshops at the Thirty-second AAAI Conference on Artificial Intelligence. 2018.
|
[23] |
LE Q , BOYDELL O , MAC NAMEE B ,et al. Deep learning at the shallow end:malware classification for non-domain experts[J]. Digital Investigation, 2018,26: S118-S126.
|
[24] |
GIBERT D , MATEU C , PLANES J . An end-to-end deep learning architecture for classification of malware’s binary content[C]// Proceedings of International Conference on Artificial Neural Networks. 2018: 383-391.
|
[25] |
YOUSEFI-AZAR M , VARADHARAJAN V , HAMEY L ,et al. Autoencoder-based feature learning for cyber security applications[C]// 2017 International Joint Conference on Neural Networks (IJCNN). 2017: 3854-3861.
|
[26] |
AHMADI M , ULYANOV D , SEMENOV S ,et al. Novel feature extraction,selection and fusion for effective malware family classification[C]// Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. 2016: 183-194.
|
[27] |
MCLAUGHLIN N , MARTINEZ DEL RINCON J , KANG B J ,et al. Deep android malware detection[C]// Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. 2017: 301-308.
|
[28] |
MAYS M , DRABINSKY N , BRANDLE S . Feature Selection for Malware Classification[C]// MAICS. 2017: 165-170.
|
[29] |
RONEN R , RADU M , FEUERSTEIN C ,et al. Microsoft malware classification challenge[J]. ArXiv Preprint arXiv:1802.10135, 2018.
|
[30] |
GIBERT D . PE parser:a python package for portable executable files processing[J]. Software Impacts, 2022,13:100365.
|
[31] |
GIBERT D , PLANES J , MATEU C ,et al. Fusing feature engineering and deep learning:a case study for malware classification[J]. Expert Systems with Applications, 2022,207:117957.
|
[32] |
BILAR D . Statistical structures:fingerprinting malware for classification and analysis[J]. Proceedings of Black Hat Federal 2006, 2006.
|
[33] |
KIM Y . Convolutional neural networks for sentence classification[J]. ArXiv Preprint arXiv:1408.5882, 2014.
|
[34] |
VASWANI A , SHAZEER N , PARMAR N ,et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017,30.
|
[35] |
AREVALO J , SOLORIO T , MONTES-Y-GOMEZ M , ,et al. Gated multimodal units for information fusion[J]. ArXiv Preprint arXiv:1702.01992, 2017.
|