Telecommunications Science ›› 2017, Vol. 33 ›› Issue (8): 1-15.doi: 10.11959/j.issn.1000-0801.2017245
• Topic:theory and practice of video technology • Next Articles
Siwei MA1,Falei LUO2,Tiejun HUANG1
Revised:
2017-08-08
Online:
2017-08-01
Published:
2017-08-25
CLC Number:
Siwei MA,Falei LUO,Tiejun HUANG. Kernel technologies and applications of AVS2 video coding standard[J]. Telecommunications Science, 2017, 33(8): 1-15.
"
技术完成时间 | AVS/类 | 应用及主要技术特征 |
2003年12月 | AVS1/基准 | 面向数字电视广播应用,采用基于8×8像素块的帧内预测,8×8像素块变换编码,去块效应滤波,变块大小运动补偿(8×8像素~16×16像素) |
2008年6月 | AVS1/伸展 | 面向监控视频应用,采用基于背景帧、核心帧的编码技术 |
2008年9月 | AVS1/加强 | 面向数字电影应用,采用基于上下文的算术编码、加权量化等技术 |
2009年6月 | AVS1移动 | 面向移动视频应用,采用了4×4像素帧内预测、8×8像素/4×4像素自适应变换等技术 |
2011年7月 | AVS1监控 | 增强的监控视频编码,采用背景图像建模编码技术 |
2012年5月 | AVS+/广播 | 面向高清数字电视广播,采用了基于上下文的算术编码、帧级加权量化、增强场预测编码等技术 |
2015年12月 | AVS2/基准 | 面向超高清数字电视广播、场景视频等应用,采用了自适应预测划分、多假设预测、层次变换、自适应算术编码、自适应滤波等技术 |
"
配置序列 | RA | LD | AI | ||||||
Y | U | V | Y | U | V | Y | U | V | |
UHD | -50.5% | -56.3% | -56.2% | -57.6% | -66.5% | -67.1% | -31.2% | -30.8% | -30.5% |
1080P | -51.3% | -61.7% | -63.2% | -44.3% | -59.0% | -62.1% | -33.1% | -37.4% | -39.2% |
WVGA | -52.8% | -58.1% | -58.6% | -50.5% | -58.1% | -59.9% | -30.4% | -28.2% | -29.8% |
WQVGA | -52.4% | -58.9% | -59.0% | -49.4% | -59.2% | -58.7% | -26.6% | -24.8% | -26.9% |
720P | -57.2% | -66.1% | -63.8% | -56.3% | -71.1% | -69.3% | -34.0% | -37.7% | -34.8% |
平均 | -52.9% | -60.5% | -60.5% | -51.0% | -62.1% | -62.8% | -31.2% | -32.4% | -33.0% |
编码复杂度 | 1 210% | 2 102% | 1 228% |
"
配置序列 | RA | LD | AI | ||||||
Y | U | V | Y | U | V | Y | U | V | |
UHD | -0.3% | 5.6% | 6.3% | 2.7% | 4.8% | 9.0% | -2.2% | 2.1% | 2.1% |
1080P | -2.3% | 5.6% | 3.8% | 0.7% | -2.4% | -1.6% | -0.7% | 2.1% | 1.2% |
WVGA | 0.0% | 6.7% | 7.7% | 0.9% | 2.2% | 5.2% | 1.5% | 3.9% | 3.8% |
WQVGA | 1.1% | 7.7% | 8.8% | 4.9% | 8.1% | 9.8% | 2.8% | 4.5% | 4.9% |
720P | -2.4% | -7.3% | -5.5% | 1.9% | -5.1% | 0.3% | -2.1% | -5.3% | -4.2% |
平均 | -0.9% | 4.1% | 4.6% | 2.1% | 1.3% | 4.1% | -0.1% | 1.4% | 1.4% |
编码复杂度 | 315% | 312% | 327% |
"
配置序列 | RA | LD | ||||
Y | U | V | Y | U | V | |
Crossroad_720×576_30 | -39.2% | -37.3% | -37.7% | -25.6% | -64.6% | -60.4% |
Office_720×576_30 | -24.0% | -24.7% | -25.0% | -15.5% | -46.1% | -44.3% |
Overbridge_720×576_30 | -60.7% | -56.9% | -56.8% | -38.4% | -58.3% | -56.2% |
Intersection_1 600×1 200_30 | -18.7% | -29.0% | -28.4% | -23.2% | -33.7% | -29.6% |
Mainroad_1 600×1 200_30 | -52.7% | -65.2% | -58.6% | -53.8% | -58.9% | -54.3% |
平均 | -39.1% | -42.6% | -41.3% | -31.3% | -52.3% | -49.0% |
编码复杂度 | 334% | 332% |
"
项目序列 | 配置 | 超快速(配置0) | 比较快速(配置3) | 中速(配置5) | 慢速(配置7) | 平和(配置9) |
BasketballDrive 1 920 dpi×1 080 dpi,50帧/s | Y BD-Rate | 11.36% | -12.55% | -18.98% | -4.29% | -11.15% |
加速比(x265) | 14.02 | 7.02 | 4.10 | 0.64 | 0.10 | |
加速比(CAVS2) | 8.75 | 3.80 | 1.32 | 0.75 | 0.12 | |
BQTerrace 1 920 dpi×1 080 dpi,60帧/s | Y BD-Rate | -26.95% | -4.19% | -10.93% | -3.67% | -3.59% |
加速比(x265) | 19.46 | 11.65 | 5.68 | 0.96 | 0.12 | |
加速比(CAVS 2) | 10.00 | 5.83 | 2.03 | 0.99 | 0.11 | |
Cactus 1 920 dpi×1 080 dpi,50帧/s | Y BD-Rate | -7.25% | -15.63% | -19.48% | -9.06% | -14.10% |
加速比(x265) | 16.23 | 8.06 | 4.95 | 0.75 | 0.11 | |
加速比(CAVS2) | 10.28 | 4.37 | 1.56 | 0.83 | 0.12 | |
Kimino 1 920 dpi×1 080 dpi,24帧/s | Y BD-Rate | 11.48% | -6.57% | -14.27% | -6.63% | -9.06% |
加速比(x265) | 13.78 | 6.41 | 3.91 | 0.79 | 0.12 | |
加速比(CAVS2) | 10.44 | 4.94 | 1.77 | 0.94 | 0.14 | |
ParkScene 1 920 dpi×1 080 dpi,24帧/s | Y BD-Rate | -6.87% | -8.63% | -11.55% | -5.33% | -6.25% |
加速比(x265) | 16.09 | 7.91 | 4.71 | 0.84 | 0.12 | |
加速比(CAVS2) | 9.54 | 4.65 | 1.73 | 0.92 | 0.12 | |
平均 | Y BD-Rate | -3.65% | -9.51% | -15.04% | -5.80% | -8.83% |
加速比(x265) | 15.92 | 8.21 | 4.67 | 0.80 | 0.11 | |
加速比(CAVS2) | 9.80 | 4.72 | 1.68 | 0.89 | 0.12 |
"
项目序列 | 配置 | 超快速(配置0) | 比较快速(配置3) | 中速(配置5) | 慢速(配置7) | 平和(配置9) |
BasketballDrive 1 920 dpi×1 080 dpi,50帧/s | Y BD-Rate | 3.30% | 2.19% | -3.54% | -0.33% | -4.99% |
加速比(x265) | 12.99 | 7.18 | 4.25 | 0.63 | 0.10 | |
加速比(CAVS2) | 8.30 | 3.15 | 0.81 | 0.40 | 0.07 | |
BQTerrace 1 920 dpi×1 080 dpi,60帧/s | Y BD-Rate | -60.50% | -20.96% | -24.22% | -25.57% | -20.77% |
加速比(x265) | 16.64 | 11.02 | 6.00 | 0.86 | 0.11 | |
加速比(CAVS2) | 7.79 | 4.43 | 1.43 | 0.58 | 0.08 | |
Cactus 1 920 dpi×1 080 dpi,50帧/s | Y BD-Rate | -12.32% | -6.44% | -11.32% | -8.51% | -11.65% |
加速比(x265) | 14.74 | 8.51 | 5.26 | 0.71 | 0.11 | |
加速比(CAVS2) | 8.91 | 3.50 | 0.96 | 0.45 | 0.07 | |
Kimino 1 920 dpi×1 080 dpi,24帧/s | Y BD-Rate | 9.59% | 7.33% | -0.37% | 1.37% | -2.17% |
加速比(x265) | 13.00 | 7.09 | 4.29 | 0.74 | 0.11 | |
加速比(CAVS2) | 9.83 | 3.92 | 1.02 | 0.48 | 0.08 | |
ParkScene 1 920 dpi×1 080 dpi,24帧/s | Y BD-Rate | -22.77% | -5.63% | -12.70% | -10.51% | -9.91% |
加速比(x265) | 14.55 | 8.47 | 5.03 | 0.76 | 0.11 | |
加速比(CAVS2) | 8.19 | 3.78 | 1.03 | 0.48 | 0.07 | |
平均 | Y BD-Rate | -16.54% | -4.70% | -10.43% | -8.71% | -9.90% |
加速比(x265) | 14.38 | 8.45 | 4.97 | 0.74 | 0.11 | |
加速比(CAVS2) | 8.60 | 3.76 | 1.05 | 0.48 | 0.07 |
"
项目序列 | 配置 | 超快速(配置0) | 比较快速(配置3) | 中速(配置5) | 慢速(配置7) | 平和(配置9) |
BasketballDrive 1 920 dpi×1 080 dpi,50帧/s | Y BD-Rate (LD) | 108.10% | 49.68% | 28.79% | 17.64% | 8.43% |
Y BD-Rate (RA) | 100.70% | 44.37% | 20.36% | 15.02% | 3.12% | |
Y BD-Rate (LD) | 186.08% | 86.19% | 49.47% | 28.78% | 25.33% | |
BQTerrace 1 920 dpi×1 080 dpi,60帧/s | Y BD-Rate (RA) | 128.49% | 54.41% | 27.43% | 17.67% | 12.66% |
Y BD-Rate (LD) | 97.37% | 45.54% | 23.76% | 14.39% | 5.34% | |
Y BD-Rate (RA) | 80.08% | 35.74% | 15.01% | 11.11% | 1.67% | |
Cactus 1 920 dpi×1 080 dpi,50帧/s | Y BD-Rate (LD) | 69.76% | 38.31% | 22.02% | 14.18% | 7.73% |
Y BD-Rate (RA) | 65.26% | 33.91% | 13.81% | 9.80% | 3.92% | |
Y BD-Rate (LD) | 78.56% | 40.13% | 21.97% | 12.79% | 8.19% | |
Kimino 1 920 dpi×1 080 dpi,24帧/s | Y BD-Rate (RA) | 63.03% | 30.37% | 13.93% | 9.40% | 5.21% |
Y BD-Rate (LD) | 107.97% | 51.97% | 29.20% | 17.55% | 11.00% | |
Y BD-Rate (RA) | 87.51% | 39.76% | 18.11% | 12.60% | 5.31% |
[1] | 朱秀昌 . 视频编码新标准——H.264[J]. 电信科学, 2002,18(12): 26-29. |
ZHU X C . A new video coding recommendation——H.264[J]. Telecommunications Science, 2002,18(12): 26-29. | |
[2] | 解伟, 郭晓强, 全子一 . IPTV 中的视频压缩技术研究[J]. 电信科学, 2006,22(3): 39-42. |
XIE W , GUO X Q , QUAN Z Y . Research on video compression in IPTV application[J]. Telecommunications Science, 2006,22(3): 39-42. | |
[3] | 郭春辉, 周经野, 刘华东 ,等. AVS1-P7与H.264关键技术及性能比较[J]. 电信科学, 2006,22(1): 47-50. |
GUO C H , ZHOU J Y , LIU H D ,et al. Key technologies and performance comparison of AVS1-P7 with H.264[J]. Telecommunications Science, 2006,22(1): 47-50. | |
[4] | CUTLER C . Differential quantization of communication signals:US patent 2605631[S]. 1952. |
[5] | OLIVER B . Efficient coding[J]. The Bell System Technical Journal, 1952(31): 724-750. |
[6] | HARRISON C . Experiments with linear prediction in television[J]. The Bell System Technical Journal, 1952,31(7): 764-783. |
[7] | CANDY J , FRANKE M , HASKELL B ,et al. Transmitting television as clusters of frame-to-frame differences[J]. The Bell System Technical Journal, 1971,50(7): 1889-1917. |
[8] | NETRAVALI A , ROBBINS J . Motion-compensated television coding:part 1[J]. The Bell System Technical Journal, 1979,58(3): 631-670. |
[9] | AHMED N , NATARAJAN T , RAO K R . Discrete cosine transform[J]. IEEE Transactions on Computers, 1974,C(32): 90-93. |
[10] | MALVAR H , HALLAPURO A , KARCZEWICZ M ,et al. Low-complexity transform and quantization in H.264/AVC[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003,13(7): 598-603. |
[11] | NARROSCHKE M . Coding efficiency of the DCT and DST in hybrid video coding[J]. IEEE Journal of Selected Topics in Signal Processing, 2013,7(6): 1062-1071. |
[12] | TESCHER A G , COX R V . An adaptive transform coding algorithm[C]// 1976 IEEE International Conference on Communications,June 14-16,1976,Philadelphia,USA. New Jersey:IEEE Press, 1976. |
[13] | KOGA T , IINUMA K , HIRANO A ,et al. Motion-compensated inter-frame coding for video conferencing:NTCG5.3.1-G 5.3.5[R]. 1981. |
[14] | 马思伟 . AVS 视频编码标准技术回顾及最新进展[J]. 计算机研究与发展, 2015,52(1): 27-37. |
MA S W . History and recent developments of AVS video coding standards[J]. Journal of Computer Research and Development, 2015,52(1): 27-37. | |
[15] | 余全合, 曹潇然, 李蔚然 ,等. 短距离帧内预测技术:AVS_M3171[S]. 2013. |
YU Q H , CAO X R , LI W R ,et al. Short range intra prediction technique:AVS_M3171[S]. 2013. | |
[16] | FLIERL M , WIEGAND T , GIROD B . Rate-constrained multihypothesis prediction for motion compensated video compression[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002,12(11): 957-969. |
[17] | 凌勇, 虞露 . F帧CE:一种前向双假设预测图像块编码技术:AVS_M3326[S]. 2014. |
LING Y , YU L . F frame CE:a block image coding technique based on forward two hypothesis prediction:AVS_M3326[S]. 2014. | |
[18] | KIM I K , LEE S , PIAO Y J ,et al. Directional multi-hypothesis prediction (DMH) for AVS2:AVS_M3094[S]. 2013. |
[19] | 李蔚然, 袁媛, 曹潇然 ,等. 非平方的四叉树变换:AVS_M3153[S]. 2013. |
LI W R , YUAN Y , CAO X R ,et al. Non-square quad-tree transform:AVS_M3153[S]. 2013. | |
[20] | 林和源, 童怡新, 王颂文 . 帧内编码二次转换改进提案:AVS_M3296[S]. 2014. |
LIN H Y , TONG Y X , WANG S W . Improvement proposal of the second time transform of intraframe coding:AVS_M3296[S]. 2014. | |
[21] | RISSANEN J . Generalized draft inequality and arithmetic coding[J]. IBM Journal of Research and Development, 1976(20): 198-203. |
[22] | MARPE D , SCHWARZ H , WIEGAND T.Context-based adaptive binary arithmetic coding in the H . 264/AVC video compression standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003,13(7): 620-636. |
[23] | WANG J , WANG X , JI T ,et al. Two-level transform coefficient coding:AVS_M3035[S]. 2012. |
[24] | LEE J S , KIM C , FU C ,et al. Sample adaptive offset for AVS2:AVS_M3197[S]. 2013. |
[25] | ZHANG X , SI J , WANG S ,et al. Adaptive loop filter for AVS2:AVS_M3292[S]. 2014. |
[26] | ZHANG X , HUANG T , TIAN Y ,et al. Low-complexity and high-efficiency background modeling for surveillance video coding[C]// 2012 Visual Communications and Image Processing (VCIP 2012),Nov 27-30,2012,San Diego,USA. New Jersey:IEEE Press, 2012. |
[27] | BOSSEN F . Common HM test conditions and software reference con-figurations:ITU-T SG16 ContributionJCTVC-L1100[S]. 2013. |
[1] | Lijuan YE, Yiting WANG, Licheng ZHU. Cellular automata model based power network attack prediction technology [J]. Telecommunications Science, 2023, 39(4): 173-179. |
[2] | Yudi SUN. A prediction model of massive 5G network users’ revisit behavior based on telecom big data [J]. Telecommunications Science, 2023, 39(2): 157-162. |
[3] | Lu LIU, Dan YANG, Ruijie CHEN, Jia LI, Xi ZHOU. Research on POI quality prediction based on KPCA-GA-BP neural network [J]. Telecommunications Science, 2023, 39(1): 108-116. |
[4] | Shan LI, Jiawei LIU. Analysis on the large-scale development stage and analysis method of 5G industry applications [J]. Telecommunications Science, 2022, 38(Z1): 28-35. |
[5] | Chao LING. 5GtoB: innovation path under the perspective of digital transformation [J]. Telecommunications Science, 2022, 38(Z1): 93-100. |
[6] | Bin ZHUGE, Linchao WANG, Yang SONG, Yu SHAO, Ligang DONG, Xian JIANG. Routing planning and handoff based on LSTM traffic prediction [J]. Telecommunications Science, 2022, 38(8): 86-100. |
[7] | Wei ZHAO, Bei LI, Ning MENG, Tingwei WANG, Junfan LIN, Le CHEN, Yuhua HU, Hanyuan YANG. Design and implementation of AI-based all-scenario intelligent base station power-saving system [J]. Telecommunications Science, 2022, 38(8): 163-170. |
[8] | Yafeng WANG, Chunhua LIANG, Lanlan ZHU, Xiaoping WANG. Research on 5G banking industry private network solution [J]. Telecommunications Science, 2022, 38(5): 45-53. |
[9] | Wenjun ZHU, Sining WANG, Xiaoxin GAO, Qian ZHENG. Load forecasting based on knowledge flow and transfer learning [J]. Telecommunications Science, 2022, 38(5): 114-123. |
[10] | Yijiang LI, Huibiao YE, Renhua XIE, Jiali LOU, Danna ZHUANG, Chuanhuang LI. Intelligent prediction method of network performance based on graph neural network [J]. Telecommunications Science, 2022, 38(3): 143-157. |
[11] | Gang AN, Yunyong ZHANG, Jinshi WANG, Xuehong YANG. 5G leading digital technology enables the rapid development of agricultural Internet [J]. Telecommunications Science, 2022, 38(11): 136-142. |
[12] | Miaomiao ZHANG, Hao ZHAO, Yan ZHOU, Yang ZHANG, Li YU, Yanping LIANG, Chunjie FENG. A long-time & short-time prediction based 5G base station energy-saving policy [J]. Telecommunications Science, 2022, 38(11): 153-162. |
[13] | Jiageng ZHANG, Min ZHU, Feng DU, Qi WANG, Jun LIU, Zhihai SUO, Li WANG. 5G network slicing algorithm based on prediction [J]. Telecommunications Science, 2021, 37(9): 74-85. |
[14] | Xuesen MA, Shuyou CHEN, Xiangdong XU, Zhaokun CHU. Neural network and Markov based combination prediction algorithm of video popularity [J]. Telecommunications Science, 2021, 37(8): 18-26. |
[15] | Xiaoqun SONG, Ming JIN, Zhongjie JIA. Joint user activity and signal detection for massive multiple-input multiple-output [J]. Telecommunications Science, 2021, 37(5): 113-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|