[1] |
2020年中国互联网发展趋势报告[EB]. 2020.
|
|
Report on China's Internet Development Trend in 2020[EB]. 2020.
|
[2] |
LIU L K , ZHANG H L , SHI J T ,et al. I2P anonymous communication network measurement and analysis[C]// Smart Computing and Communication,4th International Conference. Switzerland:Springer Cham, 2019: 105-115.
|
[3] |
CHEN Y , HU J Y , ZHAO H ,et al. Measurement and analysis of the swarm social network with tens of millions of nodes[J]. IEEE Access, 2018:1.
|
[4] |
戴冕, 程光, 周余阳 . 软件定义网络的测量方法研究[J]. 软件学报, 2019(6): 1853-1874.
|
|
DAI M , CHENG G , ZHOU Y Y . Survey on measurement method in software-defined networking[J]. Journal of Software, 2019(6): 1853-1874.
|
[5] |
JIA S Y , LUCKIE M , HUFFAKER B ,et al. Tracking the deployment of IPv6:topology,routing and performance[J]. Computer Networks, 2019(165): 106947.
|
[6] |
马卫国, 郎为民, 张寅 ,等. 虚拟化网络功能测量问题研究[J]. 电信快报, 2020 (3): 1-5.
|
|
MA W G , LANG W M , ZHANG Y ,et al. Research on function measurement of virtual network[J]. Telecommunications Information, 2020(3): 1-5.
|
[7] |
辛建芳, 朱琦, 梁广俊 ,等. 基于排队论的 D2D 蜂窝异构网络的性能分析[J]. 信号处理, 2018,34(4): 391-399.
|
|
XIN J F , ZHU Q , LIANG G J ,et al. Performance analysis based on queuing theory for D2D underlaying cellular networks[J]. Journal of Signal Processing, 2018,34(4): 391-399.
|
[8] |
熊兵, 左明科, 黎维 ,等. 面向软件定义核心网的 OpenFlow分组转发优先制排队模型研究[J]. 电子学报, 2019,47(10): 2040-2049.
|
|
XIONG B , ZUO M K , LI W ,et al. A prioritized queueing model of OpenFlow packet forwarding in software-defined core networks[J]. Acta Electronica Sinica, 2019,47(10): 2040-2049.
|
[9] |
李庆华, 陈志刚, 张连明 ,等. 基于网络演算的无线自组网QoS性能确定上界研究[J]. 通信学报, 2008(29): 32-39.
|
|
LI Q H , CHEN Z G , ZHANG L M ,et al. Deterministic upper bounds on QoS performance about wireless ad hoc network based on network calculus[J]. Journal on Communications, 2008(29): 32-39.
|
[10] |
任双印 . 基于网络演算的软件定义网络服务质量研究[D]. 长沙:国防科技大学, 2018.
|
|
REN S Y . A software defined network QoS research based on network calculus[D]. Chang sha:National University of Defense Technology, 2018.
|
[11] |
GEYER F , BONDORF S . DeepTMA:predicting effective contention models for network calculus using graph neural networks[C]// IEEE INFOCOM 2019-IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2019.
|
[12] |
XIAO S H , HE D D , GONG Z B . Deep-Q:traffic-driven QoS inference using deep generative network[C]// The 2018 Workshop on Network Meets AI & ML. New York:ACM Press, 2018: 67-73.
|
[13] |
GEYER F , . DeepComNet:Performance evaluation of network topologies using graph-based deep learning[C]// Proceedings of the 11th EAI International Conference on Performance Evaluation Methodologies and Tools. New York:ACM Press, 2017.
|
[14] |
NAKASHIMA M , SIM A , KIM J . Evaluation of deep learning models for network performance prediction for scientific facilities[C]// HPDC'20:The 29th International Symposium on High-Performance Parallel and Distributed Computing. New York:ACM Press, 2020.
|
[15] |
SHI ZP , LI J , WU CT . DeepDDoS:online DDoS attack detection[C]// 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2020.
|
[16] |
GORI M , MONFARDINI G , SCARSELLI F . A new model for learning in graph domains[C]// IEEE International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2005.
|
[17] |
SCARSELLI F , GORI M , TSOI A C ,et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009,20(1): 61-80.
|
[18] |
XIAN XF , FANG LG , SUN SM . ReGNN:A repeat aware graph neural network for session-based recommendations[J]. IEEE Access, 2020,8: 98518-98525.
|
[19] |
RAGESH R , SELLAMANICKAM S , LINGAM V ,et al. A graph convolutional network composition framework for semi-supervised classification[EB]. 2020.
|
[20] |
WANG ZY , GOMBOLAY M . Learning scheduling policies for multi-robot coordination with graph attention networks[J]. IEEE Robotics and Automation Letters, 2020,5(3): 4509-4516.
|
[21] |
FAN S,HUANG B,Labeled graph generative adversarial networks[EB]. 2019.
|
[22] |
GUO SN , LIN YF , FENG N ,et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence,Piscataway:IEEE Press, 2019(33): 922-929.
|
[23] |
PENG H , WANG HF , DU BW ,et al. Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[J]. Information Sciences, 2020(521): 277-290.
|
[24] |
GILMER J , SCHOENHOLZ S S , RILEY P F ,et al. Neural message passing for quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning. Cambridge:JMLR, 2017(70): 1263-1272.
|
[25] |
RUSEK K , JOSé SUáREZ-VARELA , MESTRES A ,et al. Unveiling the potential of graph neural networks for network modeling and optimization in SDN[C]// Proceedings of the 2019 ACM Symposium on SDN Research. New York:ACM Press, 2019: 140-151.
|
[26] |
BENGIO S , VINYALS O , JAITLY N ,et al. Scheduled sampling for sequence prediction with recurrent neural networks[C]// Advances in Neural Information Processing Systems.New York:Curran Associates,Inc. , 2015: 1171-1179.
|
[27] |
HUANG XH , ZENG M , XIE K . Intelligent traffic control for QoS optimization in hybrid SDNs[J]. Computer Networks, 2021,189(2): 107877.
|
[28] |
CLARK D D , PARTRIDGE C , RAMMING J C ,et al. A knowledge plane for the internet[C]// Conference on Applications. New York:ACM Press, 2003: 3-10.
|