Telecommunications Science ›› 2017, Vol. 33 ›› Issue (10): 115-123.doi: 10.11959/j.issn.1000-0801.2017249
• research and development • Previous Articles Next Articles
Qian LI,Hao JIANG,Jintao YANG
Revised:
2017-08-18
Online:
2017-10-01
Published:
2017-11-13
Supported by:
CLC Number:
Qian LI,Hao JIANG,Jintao YANG. Individual encounter prediction based on mobile internet record data[J]. Telecommunications Science, 2017, 33(10): 115-123.
"
网络结构特征 | 计算式 | 基本思想 |
共同邻居CN指标 | 若u和v的共同邻居数量越多,则两者有连边的可能性越大 | |
Salton指标 | 在CN的基础上,考虑了两个节点度的乘积对相似性的作用 | |
Jaccard指标 | 在u或v的邻居节点集里,随机选择一个节点,它是u和v的共同邻居的概率 | |
Sorenson指标 | 从CN指标发展而来的,它加入考虑了u和v的度之和对相似性的影响 | |
大度节点有利指标HPI | HPI指标的分母为两个节点度中较小的值 | |
大度节点不利指标HDI | 选取两个节点度中的较大值作为分母,用来抑制大度节点对相似性的影响 | |
LHN-I指标 | 若 u 和 v 拥有共同邻居数越多,两者之间的相似性就越高,同时纳入考虑了节点度乘积 | |
优先链接指标PA | 只考虑两个节点的度,节点 u 和 v 之间有连边的可能性与两个节点度的乘积成正比 | |
Adamic-Adar指标 | 共同邻居节点的度越小,它对相似度的作用越大,由此将度的对数取倒数 | |
资源分配指标RA | 从网络资源分配的角度提出的,假设有若干资源从u传送到v,两者的共同邻居当作传送的媒介,并将资源均匀分发给邻居节点,则u和v的相似度定义为v接收的资源数 |
[1] | 卢卫, 陆希玉 . 4G时代移动互联网的发展趋势[J]. 电信科学, 2014,30(5): 51-54. |
LU W , LU X Y . Mobile internet trends in 4G era[J]. Telecommunications Science, 2014,30(5): 51-54. | |
[2] | 林金桐, 许晓东 . 第五代移动互联网[J]. 电信科学, 2015,31(5): 7-14. |
LIN J T , XU X D . The 5th generation of mobile internet[J]. Telecommunications Science, 2015,31(5): 7-14. | |
[3] | 中国互联网络信息中心. 第39次中国互联网络发展状况统计报告[R]. 2017. |
China Internet Network Information Center. The 39th China statistical report on internet development[R]. 2017. | |
[4] | SONG C , BARABáSI A L . Limits of predictability in human mobility[J]. Science, 2010,327(5968): 1018-1021. |
[5] | LU X , WETTER E , BHARTI N ,et al. Approaching the limit of predictability in human mobility[J]. Scientific Reports, 2013,3(10): 2923. |
[6] | AN N T , TU M P . A Gaussian mixture model for mobile location prediction[C]// International Conference on Research,Innovation and Vision for the Future (RIVF),February 12-14,2007,Okamoto,Kobe,Japan. New Jersey:IEEE Press, 2007: 914-919. |
[7] | NOULAS A , SCELLATO S , LATHIA N ,et al. Mining user mobility features for next place prediction in location-based services[C]// International Conference on Data Mining,December 10-13,2012,Brussels,Belgium. New Jersey:IEEE Press, 2012: 1038-1043. |
[8] | MONREALE A , PINELLI F , TRASARTI R ,et al. Wherenext:a location predictor on trajectory pattern mining[C]// ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,June 28-July 1,2009,Paris,France. New York:ACM Press, 2009: 637-646. |
[9] | 苏孝强, 倪宏 . 基于概率的移动用户移动模型[J]. 微计算机信息, 2011,27(6): 1-3. |
SU X Q , NI H . Probability-based mobility model for mobile users[J]. Microcomputer Information, 2011,27(6): 1-3. | |
[10] | 程贤亮, 徐小良 . 基于序列挖掘的用户移动位置预测[J]. 工业控制计算机, 2013,26(3): 70-72. |
CHENG X L , XU X L . Location prediction based on sequential mining[J]. Industrial Control Computer, 2013,26(3): 70-72. | |
[11] | 刘震, 付俊辉, 赵楠 . 基于移动通信数据的用户移动轨迹预测方法[J]. 计算机应用和软件, 2013,30(2): 10-17. |
LIU Z , FU J H , ZHAO N . Users mobile track prediction method based on mobile communication data[J]. Computer Applications and Software, 2013,30(2): 10-17. | |
[12] | GONG Y , LI Y , JIN D ,et al. A location prediction scheme based on social correlation[C]// Vehicular Technology Conference,May 15-18,2011,Yokohama,Japan. New Jersey:IEEE Press, 2011: 1-5. |
[13] | ZHANG D , ZHANG D , XIONG H ,et al. Nextcell:predicting location using social interplay from cell phone traces[J]. IEEE Transactions on Computers, 2015,64(2): 452-463. |
[14] | SUN L , AXHAUSEN K W , LEE D H ,et al. Understanding metropolitan patterns of daily encounters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(34): 113774-13779. |
[15] | SOCIEVOLE A , DE RANGO F , MARANO S . Link prediction in human contact networks using online social ties[C]// Third International Conference on Cloud and Green Computing,September 30-October 2,2013,Karlsruhe,Germany. New Jersey:IEEE Press, 2013: 305-312. |
[16] | SCHOLZ C , ATZMUELLER M , STUMME G . On the predictability of human contacts:influence factors and the strength of stronger ties[C]// International Conference on Privacy,Security,Risk & Trust,September 3-5,2012,Amsterdam,Netherlands. New Jersey:IEEE Press, 2012: 312-321. |
[17] | 吕琳媛 . 复杂网络链路预测[J]. 电子科技大学学报, 2010,39(5): 651-660. |
LV L Y . Link prediction on complex networks[J]. Journal of University of Electronic Science and Technology of China, 2010,39(5): 651-660. | |
[18] | GONZáLEZ M C , HIDALGO C A , BARABáSI A L . Understanding individual human mobility patterns[J]. Nature, 2008,453(7196): 779-782. |
[19] | ZHOU T , LV L , ZHANG Y C . Predicting missing links via local information[J]. European Physical Journal B, 2009,71(4): 623-630. |
[20] | LV L , ZHOU T . Link prediction in weighted networks:the role of weak ties[J]. Europhys Lett, 2010,89(1): 18001. |
[21] | BREIMAN L . Random forests[J]. Machine Learning, 2001,45(1): 5-32. |
[22] | 王铮, 任华, 方燕萍 . 随机森林在运营商大数据补全中的应用[J]. 电信科学, 2016,32(12): 7-12. |
WANG Z , REN H , FANG Y P . Application of random forest in big data completion[J]. Telecommunications Science, 2016,32(12): 7-12. | |
[23] | LIBEN-NOWELL D , KLEINBERG J . The link-prediction problem for social networks[J]. Journal of the Association for Information Science & Technology, 2007,58(7): 1019-1031. |
[1] | Kun DENG, Qingfeng JIANG, Xingyan LIU. Community detection algorithm of hybrid node analysis and edge analysis in complex networks [J]. Telecommunications Science, 2023, 39(4): 87-100. |
[2] | Jia XU, Zhihua JIAN, Honghui JIN, Chao WU, Lin YOU, Yingxiao WU. Synthetic spoofing speech detection method based on center-symmetric local binary pattern [J]. Telecommunications Science, 2023, 39(1): 72-78. |
[3] | Jiaqi YU, Zhihua JIAN, Jia XU, Lin YOU, Yunlu WANG, Chao WU. Spoofing speech detection algorithm based on joint feature and random forest [J]. Telecommunications Science, 2022, 38(6): 91-99. |
[4] | Zimeng LU,Jiayi CHEN,Jing LI,Yue XIE,Xinli JIANG,Lei HAN,Qian GUO. An empty-nest power user identification method based on weighted random forest algorithm [J]. Telecommunications Science, 2020, 36(8): 112-121. |
[5] | Rongfang ZHANG,Dandan XU,Yuanguang WANG,Siyu PAN,Zhengmao LI. Application of machine learning in the fake user identification of IoT [J]. Telecommunications Science, 2019, 35(7): 136-144. |
[6] | Peng WEN,Zongju PENG,Fen CHEN,Gangyi JIANG,Mei YU. Complexity control method of random forest based HEVC [J]. Telecommunications Science, 2019, 35(2): 14-26. |
[7] | Xiaomin NIU. Value prospect and technical characteristics of 6G [J]. Telecommunications Science, 2019, 35(12): 137-141. |
[8] | Ershen WANG, Yu LI, Chen HONG, Qinghua SUN, Chang LIU. Structural properties and static robustness of Linux software network [J]. Telecommunications Science, 2019, 35(11): 9-18. |
[9] | Jingwen LIU,Wei XU,Boxuan LV,Dan WANG,Wenying NIE,Ning FAN. Design of mobile payment system based on NFC [J]. Telecommunications Science, 2018, 34(2): 131-138. |
[10] | Xu DU,Jingyu FENG,Shaoqing LV,Wei SHI. PM2.5 concentration prediction model based on random forest regression analysis [J]. Telecommunications Science, 2017, 33(7): 66-75. |
[11] | Yanqing WANG,Hanchen WANG. Research on a combining algorithm for harassing calls to identify [J]. Telecommunications Science, 2017, 33(7): 112-119. |
[12] | Hualu ZHANG,Wei JIA,Tianbing ZHANG,Zhongran ZHOU. Scheme of mobile informatization in electric power enterprise [J]. Telecommunications Science, 2017, 33(2): 154-163. |
[13] | Ge LIU,Guoyi ZHANG,Yan YU. Intra-pulse modulation recognition of radar signal based on random forest [J]. Telecommunications Science, 2016, 32(5): 69-78. |
[14] | Zheng WANG,Hua REN,Yanping FANG. Application of random forest in big data completion [J]. Telecommunications Science, 2016, 32(12): 7-12. |
[15] | Shungeng HU,Zhijun WANG,Lin ZHANG,Lin CHANG. Data sharing of mobile internet vehicles [J]. Telecommunications Science, 2016, 32(12): 26-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|