Telecommunications Science ›› 2022, Vol. 38 ›› Issue (Z1): 77-92.doi: 10.11959/j.issn.1000-0801.2022110
• Perspective • Previous Articles Next Articles
Han WANG1, Lei DIAO1, Mengling WANG1, Xin RONG1, Jiamin LI1,2, Xiaohu YOU1,2
Revised:
2022-03-09
Online:
2022-05-31
Published:
2022-05-01
Supported by:
CLC Number:
Han WANG, Lei DIAO, Mengling WANG, Xin RONG, Jiamin LI, Xiaohu YOU. A survey of key issues of URLLC in industrial internet of things[J]. Telecommunications Science, 2022, 38(Z1): 77-92.
"
序号 | 文献 | 优化目标 | 约束条件 | 优化算法 | 优势和不足 |
1 | [69] | 最大化设备加权和速率 | 时延、用户QoS | 几何程序问题求解 | 算法收敛快,但对有限块长的速率表达式和SINR表达式进行了近似估计带来误差 |
2 | [71] | 最小化上行和下行总带宽 | 端到端时延和丢包率 | 两步算法 | 联合考虑上行和下行传输,但只考虑了本地通信场景下的优化 |
3 | [72] | 最大化频谱效率 | 可靠性、时延 | 迭代算法 | 针对可用频谱分布在不连续的频段这一问题,提高了系统频谱效率和用户公平性,但只适用于周期的数据包到达模型 |
4 | [73] | 最小化错误概率 | 时延 | 基于扰动的迭代算法 | 算法复杂度低,但考虑的无人机辅助中继的特殊场景,无人机本身的续航能力、计算和通信能力有限 |
5 | [74-75] | 最小化错误概率 | 可靠性、能量、时延 | 图论和迭代算法 | 对4种下行多址传输策略的资源分配进行了优化,但是在设备数多于两个时优化算法的可拓展性还有待提高 |
6 | [76] | 最大化能量效率 | 时延、解码错误概率 | 非凸问题转化 | 提升了的URLLC的能量效率,但是假设没有强的小区内/间干扰 |
8 | [77] | 最大化安全能量效率 | 最小安全可达速率 | 凸优化 | 考虑了URLLC中的安全性问题,但使用凸优化的方法复杂度较高 |
[1] | ZHOU Y Q , LIU L , WANG L ,et al. Service-aware 6G:an intelligent and open network based on the convergence of communication,computing and caching[J]. Digital Communications and Networks, 2020,6(3): 253-260. |
[2] | GONG Y K , YAO H P , WANG J J ,et al. Edge intelligence-driven joint offloading and resource allocation for future 6G industrial internet of things[J]. IEEE Transactions on Network Science and Engineering, 2022:1. |
[3] | LI X M , XU L D . A review of internet of things—resource allocation[J]. IEEE Internet of Things Journal, 2021,8(11): 8657-8666. |
[4] | YU X J , GUO H Q . A survey on IIoT security[C]// Proceedings of 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS). Piscataway:IEEE Press, 2019: 1-5. |
[5] | LIN Z F , LIU J Q , XIAO J C ,et al. A survey:resource allocation technology based on edge computing in IIoT[C]// Proceedings of 2020 International Conference on Communications,Computing,Cybersecurity,and Informatics (CCCI). Piscataway:IEEE Press, 2020: 1-5. |
[6] | POPOVSKI P , STEFANOVI? ? ,, NIELSEN J J ,et al. Wireless access in ultra-reliable low-latency communication (URLLC)[J]. IEEE Transactions on Communications, 2019,67(8): 5783-5801. |
[7] | POKHREL S R , DING J , PARK J ,et al. Towards enabling critical mMTC:a review of URLLC within mMTC[J]. IEEE Access, 2020,8: 131796-131813. |
[8] | DING J , NEMATI M , POKHREL S R ,et al. Enabling grant-free URLLC:an overview of principle and enhancements by massive MIMO[J]. IEEE Internet of Things Journal, 2022,9(1): 384-400. |
[9] | SALH A , AUDAH L , SHAH N S M ,et al. A survey on deep learning for ultra-reliable and low-latency communications challenges on 6G wireless systems[J]. IEEE Access, 2021(9): 55098-55131. |
[10] | VAEZI M , AZARI A , KHOSRAVIRAD S R ,et al. Cellular,wide-area,and non-terrestrial IoT:a survey on 5G advances and the road towards 6G[J]. IEEE Communications Surveys & Tutorials,1028,PP(99):1 |
[11] | GUO M Q , GURSOY M C . Distributed sparse activity detection in cell-free massive MIMO systems[C]// Proceedings of 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Piscataway:IEEE Press, 2019: 1-5. |
[12] | MUMTAZ S , ALSOHAILY A , PANG Z B ,et al. Massive internet of things for industrial applications:addressing wireless IIoT connectivity challenges and ecosystem fragmentation[J]. IEEE Industrial Electronics Magazine, 2017,11(1): 28-33. |
[13] | VILGELM M , MURAT GüRSU H , KELLERER W ,et al. Random access protocols for industrial internet of things:enablers,challenges,and research directions[EB]. 2021. |
[14] | SHARMA S K , WANG X B . Toward massive machine type communications in ultra-dense cellular IoT networks:current issues and machine learning-assisted solutions[J]. IEEE Communications Surveys & Tutorials, 2020,22(1): 426-471. |
[15] | ZHAO X Y , CHEN W , POOR H V . Achieving extremely low-latency in industrial internet of things:joint finite blocklength coding,resource block matching,and performance analysis[J]. IEEE Transactions on Communications, 2021,69(10): 6529-6544. |
[16] | POLYANSKIY Y , POOR H V , VERDU S . Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010,56(5): 2307-2359. |
[17] | ZHOU Y Q , TIAN L , LIU L ,et al. Fog computing enabled future mobile communication networks:a convergence of communication and computing[J]. IEEE Communications Magazine, 2019,57(5): 20-27. |
[18] | LIM G , JI H , SHIM B . Hybrid active user detection for massive machine-type communications in IoT[C]// Proceedings of 2018 International Conference on Information and Communication Technology Convergence (ICTC). Piscataway:IEEE Press, 2018: 1049-1052. |
[19] | FENGLER A , HAGHIGHATSHOAR S , JUNG P ,et al. Non-Bayesian activity detection,large-scale fading coefficient estimation,and unsourced random access with a massive MIMO receiver[J]. IEEE Transactions on Information Theory, 2021,67(5): 2925-2951. |
[20] | MEI Y K , GAO Z , WU Y P ,et al. Compressive sensing-based joint activity and data detection for grant-free massive IoT access[J]. IEEE Transactions on Wireless Communications, 2022,21(3): 1851-1869. |
[21] | LIU L , YU W . Massive connectivity with massive MIMO—part I:d evice activity detection and channel estimation[J]. IEEE Transactions on Signal Processing, 2018,66(11): 2933-2946. |
[22] | DJELOUAT H , LEINONEN M , JUNTTI M . Spatial correlation aware compressed sensing for user activity detection and chan nel estimation in massive MTC[J]. IEEE Transactions on Wireless Communications, 2022(99):1. |
[23] | DING J , QU D M , LIU P ,et al. Machine learning enabled preamble collision resolution in distributed massive MIMO[J]. IEEE Transactions on Communications, 2021,69(4): 2317-2330. |
[24] | SHAO X D , CHEN X M , NG D W K ,et al. Cooperative activity detection:sourced and unsourced massive random access paradigms[J]. IEEE Transactions on Signal Processing, 2020,68: 6578-6593. |
[25] | XIAO J L , DENG G , NIE G F ,et al. Dynamic adaptive compressive sensing-based multi-user detection in uplink URLLC[C]// Proceedings of 2018 IEEE 29th Annual International Symposium on Personal,Indoor and Mobile Radio Communications. Piscataway:IEEE Press, 2018: 1-6. |
[26] | WU L T , SUN P , WANG Z B ,et al. Joint user activity identification and channel estimation for grant-free NOMA:a spatial–temporal structure-enhanced approach[J]. IEEE Internet of Things Journal, 2021,8(15): 12339-12349. |
[27] | SENEL K , LARSSON E G . Grant-free massive MTC-enabled massive MIMO:a compressive sensing approach[J]. IEEE Transactions on Communications, 2018,66(12): 6164-6175. |
[28] | DJELOUAT H , LEINONEN M , RIBEIRO L ,et al. Joint user identification and channel estimation via exploiting spatial channel covariance in mMTC[J]. IEEE Wireless Communications Letters, 2021,10(4): 887-891. |
[29] | CHEN Z L , SOHRABI F , YU W . Multi-cell sparse activity detection for massive random access:massive MIMO versus cooperative MIMO[J]. IEEE Transactions on Wireless Communications, 2019,18(8): 4060-4074. |
[30] | SHAO X D , CHEN X M , QIANG Y Y ,et al. Feature-aided adaptive-tuning deep learning for massive device detection[J]. IEEE Journal on Selected Areas in Communications, 2021,39(7): 1899-1914. |
[31] | HAGHIGHATSHOAR S , JUNG P , CAIRE G . Improved scaling law for activity detection in massive MIMO systems[C]// Proceedings of 2018 IEEE International Symposium on Information Theory. Piscataway:IEEE Press, 2018: 381-385. |
[32] | WANG B C , DAI L L , MIR T ,et al. Multi-user detection based on structured compressive sensing for uplink grant-free NOMA[EB]. 2016. |
[33] | SHAO X D , CHEN X M , JIA R D . A dimension reduction-based joint activity detection and channel estimation algorithm for massive access[J]. IEEE Transactions on Signal Processing, 2020,68: 420-435. |
[34] | KE M L , GAO Z , WU Y P ,et al. Massive access in cell-free massive MIMO-based internet of things:cloud computing and edge computing paradigms[J]. IEEE Journal on Selected Areas in Communications, 2021,39(3): 756-772. |
[35] | CHEN S F , ZHANG J Y , JIN Y ,et al. Wireless powered IoE for 6G:massive access meets scalable cell-free massive MIMO[J]. China Communications, 2020,17(12): 92-109. |
[36] | CHENG L , LIU L , CUI S G . A covariance-based user activity detection and channel estimation approach with novel pilot design[C]// Proceedings of 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications. Piscataway:IEEE Press, 2020: 1-5. |
[37] | CUI Y , LI S C , ZHANG W Q ,et al. Jointly sparse signal recovery and support recovery via deep learning with applications in MIMO-based grant-free random access[EB]. 2020. |
[38] | ZHANG J , HE H T , WEN C K ,et al. Deep learning based on orthogonal approximate message passing for CP-free OFDM[C]// Proceedings of ICASSP 2019 - 2019 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE Press, 2019: 8414-8418. |
[39] | LIU J , AGIWAL M , QU M ,et al. Online control of preamble groups with priority in massive IoT networks[J]. IEEE Journal on Selected Areas in Communications, 2021,39(3): 700-713. |
[40] | ASTUDILLO C A , DE ANDRADE T P C , DA FONSECA N L S . Allocation of control resources with preamble priority awareness for human and machine type communications in LTE-Advanced networks[C]// Proceedings of 2017 IEEE International Conference on Communications. Piscataway:IEEE Press, 2017: 1-6. |
[41] | ASTUDILLO C A , DE ANDRADE T P C , DA FONSECA N L S . Impact of preamble-priority-aware downlink control signaling scheduling on LTE/LTE-A network performance[C]// Proceedings of 2017 IEEE 86th Vehicular Technology Conference. Piscataway:IEEE Press, 2017: 1-5. |
[42] | VILGELM M , GüRSU H M ,, KELLERER W ,et al. LATMAPA:load-adaptive throughput-maximizing preamble allocation for prioritization in 5G random access[J]. IEEE Access, 2017(5): 1103-1116. |
[43] | VANGELISTA L , CENTENARO M . Performance evaluation of HARQ schemes for the internet of things[J]. Computers, 2018,7(4): 48. |
[44] | SESIA S , TOUFIK I , BAKER M . LTE - the UMTS long term evolution[M]. Chichester,UK: John Wiley & Sons,Ltd., 2011. |
[45] | MAKKI B , SVENSSON T , CAIRE G ,et al. Fast HARQ over finite blocklength codes:a technique for low-latency reliable communication[J]. IEEE Transactions on Wireless Communications, 2019,18(1): 194-209. |
[46] | G?KTEPE B , RYKOVA T , FEHRENBACH T ,et al. Feedback prediction for proactive HARQ in the context of industrial internet of things[C]// Proceedings of GLOBECOM 2020 - 2020 IEEE Global Communications Conference. Piscataway:IEEE Press, 2020: 1-7. |
[47] | DE CARVALHO E , BJORNSON E , SORENSEN J H ,et al. Random access protocols for massive MIMO[J]. IEEE Communications Magazine, 2017,55(5): 216-222. |
[48] | DE CARVALHO E , BJ?RNSON E , S?RENSEN J H ,et al. Random pilot and data access in massive MIMO for machine-type communications[J]. IEEE Transactions on Wireless Communications, 2017,16(12): 7703-7717. |
[49] | BJ?RNSON E , DE CARVALHO E , S?RENSEN J H , ,et al. A random access protocol for pilot allocation in crowded massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2017,16(4): 2220-2234. |
[50] | DING J , QU D M , JIANG H ,et al. Virtual carrier sensing-based random access in massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2018,17(10): 6590-6600. |
[51] | BJ?RNSON E , DE CARVALHO E , LARSSON E G ,et al. Random access protocol for massive MIMO:strongest-user collision resolution (SUCR)[C]// Proceedings of 2016 IEEE International Conference on Communications. Piscataway:IEEE Press, 2016: 1-6. |
[52] | JIANG H , QU D M , DING J ,et al. Multiple preambles for high success rate of grant-free random access with massive MIMO[J]. IEEE Transactions on Wireless Communications, 2019,18(10): 4779-4789. |
[53] | BAI L , LIU J X , YU Q ,et al. A collision resolution protocol for random access in massive MIMO[J]. IEEE Journal on Selected Areas in Communications, 2021,39(3): 686-699. |
[54] | SOLTANMOHAMMADI E , GHAVAMI K , NARAGHI-POUR M , . A survey of traffic issues in machine-to-machine communications over LTE[J]. IEEE Internet of Things Journal, 2016,3(6): 865-884. |
[55] | PAN Q , WEN X M , LU Z M ,et al. Cluster-based group paging for massive machine type communications under 5G networks[J]. IEEE Access, 2018,6: 64891-64904. |
[56] | HE Y X , REN G L , LIANG S . Spatial group based access class barring for massive access in M2M communications[J]. IEEE Communications Letters, 2021,25(3): 812-816. |
[57] | ALTHUMALI H D , OTHMAN M , NOORDIN N K ,et al. Dynamic backoff collision resolution for massive M2M random access in cellular IoT networks[J]. IEEE Access, 2020(8): 201345-201359. |
[58] | ALI M S , HOSSAIN E , KIM D I . LTE/LTE-A random access for massive machine-type communications in smart cities[J]. IEEE Communications Magazine, 2017,55(1): 76-83. |
[59] | MIUCCIO L , PANNO D , RIOLO S . Joint congestion control and resource allocation for massive MTC in 5G networks based on SCMA[C]// Proceedings of 2019 15th International Conference on Telecommunications (ConTEL). Piscataway:IEEE Press, 2019: 1-8. |
[60] | YU Y , YUAN L Y . Study on slotted random multi-access protocol with two-dimensional probability[C]// Proceedings of 2019 IEEE International Conference on Computer Science and Educational Informatization. Piscataway:IEEE Press, 2019: 244-250. |
[61] | CHENG M Y , LIN G Y , WEI H Y ,et al. Overload control for machine-type-communications in LTE-advanced system[J]. IEEE Communications Magazine, 2012,50(6): 38-45. |
[62] | TANG F X , KAWAMOTO Y , KATO N ,et al. Future intelligent and secure vehicular network toward 6G:machine-learning approaches[J]. Proceedings of the IEEE, 2020,108(2): 292-307. |
[63] | CHEN Z Q , SMITH D B . Heterogeneous machine-type communications in cellular networks:random access optimization by deep reinforcement learning[C]// Proceedings of 2018 IEEE International Conference on Communications. Piscataway:IEEE Press, 2018: 1-6. |
[64] | MOON J , LIM Y . Access control of MTC devices using reinforcement learning approach[C]// Proceedings of 2017 International Conference on Information Networking (ICOIN). Piscataway:IEEE Press, 2017: 641-643. |
[65] | BELLO L M , MITCHELL P , GRACE D . Application of Q-learning for RACH access to support M2M traffic over a cellular network[C]// Proceedings of European Wireless 2014;20th European Wireless Conference,VDE2014: 1-6. |
[66] | MOHAMMED A H , KHWAJA A S , ANPALAGAN A ,et al. Base station selection in M2M communication using Q-learning algorithm in LTE-A networks[C]// Proceedings of 2015 IEEE 29th International Conference on Advanced Information Networking and Applications. Piscataway:IEEE Press, 2015: 17-22. |
[67] | SHI Y , SAGDUYU Y E , ERPEK T . Reinforcement learning for dynamic resource optimization in 5G radio access network slicing[C]// Proceedings of 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks. Piscataway:IEEE Press, 2020: 1-6. |
[68] | 胡江祺 . 工业物联网中动态资源分配机制的研究[D]. 西安:西安电子科技大学, 2019. |
HU J Q . Research on dynamic resource allocation scheme in industrial Internet of Things[D]. Xi'an:Xidian University, 2019. | |
[69] | REN H , PAN C H , DENG Y S ,et al. Joint pilot and payload power allocation for massive-MIMO-enabled URLLC IIoT networks[J]. IEEE Journal on Selected Areas in Communications, 2020,38(5): 816-830. |
[70] | SHE C Y , YANG C Y , QUEK T Q S . Radio resource management for ultra-reliable and low-latency communications[J]. IEEE Communications Magazine, 2017,55(6): 72-78. |
[71] | SHE C Y , YANG C Y , QUEK T Q S . Joint uplink and downlink resource configuration for ultra-reliable and low-latency communications[J]. IEEE Transactions on Communications, 2018,66(5): 2266-2280. |
[72] | LIBRINO F , SANTI P . Resource allocation and sharing in URLLC for IoT applications using shareability graphs[J]. IEEE Internet of Things Journal, 2020,7(10): 10511-10526. |
[73] | PAN C H , REN H , DENG Y S ,et al. Joint blocklength and location optimization for URLLC-enabled UAV relay systems[J]. IEEE Communications Letters, 2019,23(3): 498-501. |
[74] | REN H , PAN C H , DENG Y S ,et al. Resource allocation for URLLC in 5G mission-critical IoT networks[C]// Proceedings of ICC 2019 - 2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-6. |
[75] | REN H , PAN C H , DENG Y S ,et al. Joint power and blocklength optimization for URLLC in a factory automation scenario[J]. IEEE Transactions on Wireless Communications, 2019,19(3): 1786-1801. |
[76] | SUN C J , SHE C Y , YANG C Y ,et al. Optimizing resource allocation in the short blocklength regime for ultra-reliable and low-latency communications[J]. IEEE Transactions on Wireless Communications, 2019,18(1): 402-415. |
[77] | ZHAO J , ZHU W P . Power allocation and scaling law analysis for secured and energy efficient URLLC IoT networks[J]. Physical Communication, 2021,45:101293. |
[78] | CHALAPATHI G S S , CHAMOLA V , VAISH A ,et al. Industrial Internet of Things (IIoT) Applications of Edge and Fog Computing:A Review and Future DirectionsFog/Edge Computing for Security,Privacy,and Applications, 2021: 293-325. |
[79] | QIU T , CHI J C , ZHOU X B ,et al. Edge computing in industrial Internet of Things:architecture,advances and challenges[J]. IEEE Communications Surveys & Tutorials, 2020,22(4): 2462-2488. |
[80] | SATYANARAYANAN M , BAHL P , CACERES R ,et al. The case for VM-based cloudlets in mobile computing[J]. IEEE Pervasive Computing, 2009,8(4): 14-23. |
[81] | WANG S , ZHANG X , ZHANG Y ,et al. A survey on mobile edge networks:convergence of computing,caching and communications[J]. IEEE Access, 2017,5: 6757-6779. |
[82] | EL-SAYED H , SANKAR S , PRASAD M ,et al. Edge of things:the big picture on the integration of edge,IoT and the cloud in a distributed computing environment[J]. IEEE Access, 2018,6: 1706-1717. |
[83] | MARKAKIS E K , KARRAS K , SIDERIS A ,et al. Computing,caching,and communication at the edge:the cornerstone for building a versatile 5G ecosystem[J]. IEEE Communications Magazine, 2017,55(11): 152-157. |
[84] | XU H S , WU J , LI J H ,et al. Deep-reinforcement-learning-based cybertwin architecture for 6G IIoT:an integrated design of control,communication,and computing[J]. IEEE Internet of Things Journal, 2021,8(22): 16337-16348. |
[85] | KEKKI S , FEATHERSTONE W , FANG Y ,et al. MEC in 5G networks[EB]. 2018. |
[86] | HOU X W , REN Z Y , YANG K ,et al. IIoT-MEC:a novel mobile edge computing framework for 5G-enabled IIoT[C]// Proceedings of 2019 IEEE Wireless Communications and Networking Conference. Piscataway:IEEE Press, 2019: 1-7. |
[87] | YANG B , CAO X L , LI X F ,et al. Mobile-edge-computing-based hierarchical machine learning tasks distribution for IIoT[J]. IEEE Internet of Things Journal, 2020,7(3): 2169-2180. |
[88] | ZHAO Z C , ZHAO R , XIA J J ,et al. A novel framework of three-hierarchical offloading optimization for MEC in industrial IoT networks[J]. IEEE Transactions on Industrial Informatics, 2020,16(8): 5424-5434. |
[89] | CHEN W H , ZHANG Z , HONG Z C ,et al. Cooperative and distributed computation offloading for blockchain-empowered industrial Internet of Things[J]. IEEE Internet of Things Journal, 2019,6(5): 8433-8446. |
[90] | CHEN Y , LIU Z Y , ZHANG Y C ,et al. Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2021,17(7): 4925-4934. |
[91] | WU J J , ZHANG G L , NIE J Q ,et al. Deep reinforcement learning for scheduling in an edge computing-based industrial Internet of Things[J]. Wireless Communications and Mobile Computing,2021, 2021:8017334. |
[1] | Yu KANG, Yaqiong LIU, Tongyu ZHAO, Guochu SHOU. A survey on AI algorithms applied in communication and computation in Internet of vehicles [J]. Telecommunications Science, 2023, 39(1): 1-19. |
[2] | Yusun FU, Jinhui TANG. A survey on 5G capabilities enabling the factories of the future [J]. Telecommunications Science, 2022, 38(9): 18-35. |
[3] | Zhimin HE, Yuzhe LIN, Yujie CHENG, Shi YAN. Downlink wireless resource allocation method of V2X based on wireless sensing assistance [J]. Telecommunications Science, 2022, 38(9): 60-70. |
[4] | Xiaoyu CHANG, Weijia ZHANG, Xudong1 LI, Xiaonan ZHANG, Gang WANG, Gang JIA. Study on remote sensing satellites random access to internet constellation and on-orbit intelligent processing [J]. Telecommunications Science, 2022, 38(4): 59-69. |
[5] | Lushan ZOU, Xiaowen HUANG, Jingmin YANG, Yifeng ZHENG, Guanglin ZHANG, Wenjie ZHANG. Review on resources allocation and pricing methods in mobile edge computing [J]. Telecommunications Science, 2022, 38(3): 113-132. |
[6] | Yun SHENG, Chen XU, Guangyuan ZHENG. Task offloading and resource allocation in NOMA-based ultra-dense MEC networks [J]. Telecommunications Science, 2022, 38(2): 35-46. |
[7] | Xiaoming DAI, Lizhuo PANG, Zheng CHANG, Xinyue ZHANG, Yiran XING, Xiyuan WANG. Pattern division random access (PDRA) scheme for mMIMO systems [J]. Telecommunications Science, 2022, 38(10): 57-66. |
[8] | Cheng DING, Jinrong CHEN, Xiaodong CAO, Yi WANG. Quality of service based hierarchical resource allocation algorithm [J]. Telecommunications Science, 2022, 38(1): 102-111. |
[9] | Yunhe YU, Jun SUN. Research on resource allocation algorithm of centralized and distributed Q-learning in machine communication [J]. Telecommunications Science, 2021, 37(11): 41-50. |
[10] | Fangmin XU,Lijiao WU,Fan YANG,Chenglin ZHAO. Time-sensitive networking (TSN) and wireless TSN technology [J]. Telecommunications Science, 2020, 36(8): 81-91. |
[11] | Lei MAO,Weibin WANG,Jian LUO. Research and application of MEC service continuity technology [J]. Telecommunications Science, 2020, 36(7): 34-41. |
[12] | Liuqing WU,Xiaorong ZHU. Joint optimization algorithm for task offloading resource allocation based on edge-end collaboration [J]. Telecommunications Science, 2020, 36(3): 42-52. |
[13] | Kai LI,Wei LIU,Guiyang LUO,Jinglin LI. Customer-centered mobile network intelligent operation approach [J]. Telecommunications Science, 2020, 36(2): 101-108. |
[14] | Xian ZHANG,Xueyan CAO,Binghong LIU,Yuan AI,Chenxi LIU. Smart fog radio access networks for 6G:architecture and key technologies [J]. Telecommunications Science, 2020, 36(1): 3-10. |
[15] | Haiyu JIA,Jia CHEN,Mingxin WANG. Survey on network function virtualization in RAN [J]. Telecommunications Science, 2019, 35(1): 97-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|