Telecommunications Science ›› 2023, Vol. 39 ›› Issue (1): 100-107.doi: 10.11959/j.issn.1000-0801.2023001
• Research and Development • Previous Articles Next Articles
Chuanbing GONG1, Mingshuai YANG1, Song WU2, Haiping GE2, Shouguo ZHANG2, Lei LIU2, Yunshan QI2, Hui XU2
Revised:
2022-12-26
Online:
2023-01-20
Published:
2023-01-01
CLC Number:
Chuanbing GONG, Mingshuai YANG, Song WU, Haiping GE, Shouguo ZHANG, Lei LIU, Yunshan QI, Hui XU. Research on the application of site value evaluation model[J]. Telecommunications Science, 2023, 39(1): 100-107.
"
参数名称 | 普通市区(700 MHz) | 普通市区(2.1 GHz) | |||
上行 | 下行 | 上行 | 下行 | ||
系统带宽/MHz | 10 | 15 | |||
总RB数/个 | 50 | 100 | |||
上行与下行配比 | 1 | 1 | 1 | 1 | |
MIMO配置 | 1T4R | 2T2R | 1T4R | 4T2R | |
边缘速率/(kbit·s-1) | 256 | 4 096 | 256 | 4 096 | |
发射机 单天线端口最大发射功率/dBm | 23 | 43 | 23 | 43 | |
发射天线增益/dBi | 0 | 15 | 0 | 15 | |
EIRP/dBm | 23 | 58 | 23 | 58 | |
单用户分配RB数/个 | 4 | 50 | 4 | 75 | |
调制编码方案(MCS) | 4 | 5 | 4 | 4 | |
接收机 接收机噪声系数/dB | 3 | 7 | 3 | 7 | |
热噪声/dBm | -115.4 | -104.5 | -115.4 | -102.7 | |
接收机底噪声/dBm | -112.4 | -97.5 | -112.4 | -95.7 | |
SINR/dB | -1 | 1 | -1 | -1 | |
接收机灵敏度/dBm | -113.4 | -96.5 | -113.4 | -96.7 | |
增益余量损耗 接收天线增益/dBi | 15 | 0 | 15 | 0 | |
干扰余量/dB | 3 | 5 | 3 | 5 | |
馈线损耗/dB | 1 | 1 | 1 | 1 | |
塔放增益/dB | 0 | 0 | 0 | 0 | |
阴影衰落/dB | 8.7 | 8.7 | 8.7 | 8.7 | |
穿透损耗/dB | 18 | 18 | 18 | 18 | |
人体损耗/dB | 3 | 3 | 0 | 0 | |
分集增益/dB | 6 | 5 | 6 | 7 | |
切换增益/dB | 0 | 0 | 0 | 0 | |
最大路径损耗Lp/dB | 123.8 | 123.8 | 126.8 | 129 |
"
网元 | 维度 | 指标名称 | 指标定义 |
单站(规划站) | 成本 | TCO | TCO=CAPEX+OPEX |
CAPEX=无线+配套+传输接入(按照10年线性折旧) | |||
OPEX=铁塔租金+维护费用+电费 | |||
流量 | 日均流量/GB | 根据上文流量估计方法估计基站开通后日均上/下行总流量 | |
簇指标(相邻站) | 忙时利用率 | 忙时下行 | 计算每天簇下行PRB利用率最大值,然后取7天平均。 |
PRB利用率 | 忙时下行PRB利用率=∑下行PRB占用数/∑下行可用PRB数 | ||
超忙小区 | 计算7天内平均超忙小区比例。 | ||
比例 | 超忙小区定义为一天内任意时段满足:(下行 PRB 利用率≥80%且每 PRB 流量≥ | ||
0.06 GB且RRC连接用户数≥0.6)或(下行PRB利用率≥80%且RRC连接用户数≥2) | |||
忙时每PRB | 计算每天忙时“RRC连接数/PRB”最大值,然后取7天平均。 | ||
连接数/个 | 忙时每PRB连接数=∑RRC连接数/∑等效PRB数 | ||
(FDD制式等效PRB数为小区配置PRB数,TDD制式等效PRB数为小区配置PRB | |||
数×下行时隙占比) | |||
全天PRB | 每PRB日均 | 计算每天每PRB承载流量,然后取7天平均。 | |
利用率 | 流量/GB | 每PRB日均流量=∑上下行总流量/∑下行等效PRB数 | |
发展潜力 | 流量年 | 簇内所有在网基站日均总流量的年增长率 | |
增长率 | |||
注:资本性支出(capital expenditure,CAPEX),如购买基站费用;运营成本(operating expense,OPEX),如电费、铁塔租金等;频分双工(frequency division duplexing,FDD);物理资源块(physical resource block,PRB) |
"
网元 | 指标名称 | 权重 | 门限1 | 门限2 | 指标评分方法 |
单站指标 | TCO/万元 | 20% | 分3段线性计分 | ||
x≤门限1,得满分100 | |||||
x≥门限2,[门限2]/x× 60 | |||||
其他,60+(门限2-x) ? (门限2-门限1)×40 | |||||
(门限1= TCO 均值-TCO标准差,门限2 =TCO均值+TCO标准差, | |||||
TCO均值和标准差基于现网统计) | |||||
日均流量/GB | 10% | 0 | 200 | x≥门限2,得满分100 | |
其他,线性计分,x/[门限2]×100 | |||||
(门限2,基于现网统计,或基于典型配置基站的TCO、每GB单价、期 | |||||
望的静态投资回收期计算期望值) | |||||
簇指标 | 忙时下行 PRB | 10% | 0 | 80% | x≥门限2,得满分100 |
利用率/个 | x<门限2,线性计分,x × 100 | ||||
(根据RRC连接数和PRB利用率变化关系统计,利用率超过80%时会对 | |||||
用户感知产生明显影响) | |||||
超忙小区比例 | 20% | 0 | 50% | x≥门限2,得满分100 | |
其他,线性得分,x/[门限2]×100 | |||||
忙时每PRB | 20% | 0 | 1.2 | x≥门限2,得满分100 | |
连接数/个 | 其他,x/[门限2]×100 | ||||
(门限 2 根据业务模型测算在满足要求的 QoS 条件下允许的最大激活用 | |||||
户数,再根据当地用户激活率计算得到) | |||||
每PRB日均 | 10% | 0 | 1 | x≥门限2,得满分100 | |
流量/GB | 其他,x/[门限2]×100 | ||||
(门限2基于现网统计得到,即选取全天最忙时下行PRB利用率满足一 | |||||
定条件下的小区的每PRB日均流量作为样本,再统计每PRB日均流量分 | |||||
布区间,取中值(TDD模式,计算每PRB日均流量时下行可用PRB数需 | |||||
乘以下行时隙占比)) | |||||
流量年增长率 | 10% | 0 | 100% | x≤0,不得分 | |
x<门限2,得分为x× 100 | |||||
x≥门限2,得满分100 |
"
网元 | 指标名称 | 指标值 | 权重 | 指标得分 | 加权得分 |
单站指标 | CAPEX/万元 | 23.18 | / | / | / |
OPEX/(万元·站年-1) | 4.63 | / | / | / | |
TCO得分 | / | 20% | 75 | 15 | |
日均流量-估计值/GB | 235.5 | / | / | / | |
收入/(元·天-1) | 706.5 | / | / | / | |
每GB成本/(元·GB-1) | 0.81 | / | / | / | |
静态回收期/年 | 1.1 | / | / | / | |
收入得分 | / | 10% | 100 | 10 | |
簇指标 | 忙时下行PRB利用率 | 73.9% | 10% | 73.9 | 7.4 |
超忙劣化小区比例 | 55.6% | 20% | 100 | 20 | |
忙时每PRB RRC连接数/个 | 1.24 | 20% | 100 | 20 | |
每PRB日均流量/GB | 1.32 | 10% | 100 | 10 | |
簇流量年增长率 | 40.9% | 10% | 40.9 | 4.1 | |
基站价值评估得分 | / | / | / | 86.5 |
[1] | 尚军, 焦卫平, 张春凌 . 多维度基站站址价值评估分析研究[J]. 互联网天地, 2016(11): 44-48. |
SHANG J , JIAO W P , ZHANG C L . Research and analysis of the assessment of the multi dimension base station value[J]. China Internet, 2016(11): 44-48. | |
[2] | 田艳中 . 农村移动基站的投资效益分析[J]. 电信工程技术与标准化, 2012,25(12): 48-51. |
TIAN Y Z . Analysis on the investment and benefit of base sta-tion in countryside[J]. Telecom Engineering Technics and Stan-dardization, 2012,25(12): 48-51. | |
[3] | 郑旭升, 陈敏 . 农村基站建设优先级评估体系[J]. 广东通信技术, 2010,30(7): 2-5. |
ZHENG X S , CHEN M . Priority evaluation system for rural base station construction[J]. Guangdong Communication Tech-nology, 2010,30(7): 2-5. | |
[4] | 黄圣红, 李洲 . 基于多维度开展 4G 无线网络投资效益评估[J]. 电信工程技术与标准化, 2016,29(10): 70-74. |
HUANG S H , LI Z . Research on the evaluation of investment benefit of 4G radio network based on multi dimension[J]. Telecom Engineering Technics and Standardization, 2016,29(10): 70-74. | |
[5] | 严寒榕 . 基于大数据的多维度评估模型探讨[J]. 通讯世界, 2014(6): 4-6. |
YAN H R . Discussion on multi-dimensional evaluation model based on big data[J]. Telecom World, 2014(6): 4-6. | |
[6] | YANG H Y . A network traffic forecasting method based on SA optimized ARIMA-BP neural network[J]. Computer Networks, 2021(193): 108102. |
[7] | WANG X , ZHAO J , ZHU L ,et al. Adaptive multi-receptive field spatial-temporal graph convolutional network for traffic forecasting[J]. 2021 IEEE Global Communications Conference (GLOBECOM), 2021: 1-7. |
[8] | 宋巍, 郑志刚, 顾翀 . 基于多维度数据的5G站址选择评估体系[J]. 移动通信, 2020,44(5): 42-44. |
SONG W , ZHENG Z G , GU C . 5G site selection evaluation system based on multidimensional data[J]. Mobile Communica-tions, 2020,44(5): 42-44. | |
[9] | 汪丁鼎, 许光斌, 丁巍 ,等. 5G 无线网络技术与规划设计[M]. 北京: 人民邮电出版社, 2019. |
WANG D D , XU G B , DING W ,et al. 5G wireless network technology and planning design[M]. Beijing: Posts & Telecom Press, 2019. | |
[10] | 邱斌, 嵇明华, 李土光 ,等. 5G 网络智能规划体系研究[J]. 邮电设计技术, 2022(2): 9-13. |
QIU B , JI M H , LI T G ,et al. Research on 5G intelligent plan-ning system[J]. Designing Techniques of Posts and Telecom-munications, 2022(2): 9-13. | |
[11] | 邓金荣, 李陵 . 基于大数据分析的基站效益评估建模与应用[J]. 广东通信技术, 2022,42(2): 30-33. |
DENG J R , LI L . Modeling and application of base station ben-efit evaluation based on big data analysis[J]. Guangdong Com-munication Technology, 2022,42(2): 30-33. | |
[12] | 沙晶 . 大数据分析在基站建设优先级评价中的应用研究[J]. 中国新通信, 2017,19(17): 120-121. |
SHA J . Research on the application of big data analysis in the priority evaluation of base station construction[J]. China New Telecommunications, 2017,19(17): 120-121. | |
[13] | LIU Q , SHI Y M , LI F C ,et al. Research on services modeling in LTE networks[J]. China Communications, 2016,13(2): 109-120. |
[14] | ZHOU Y Q , LIU L , WANG L ,et al. Service-aware 6G:an intelligent and open network based on the convergence of communication,computing and caching[J]. Digital Communications and Networks, 2020,6(3): 253-260. |
[15] | ZHOU Y Q , TIAN L , LIU L ,et al. Fog computing enabled future mobile communication networks:a convergence of communication and computing[J]. IEEE Communications Magazine, 2019,57(5): 20-27. |
[1] | Zehua GUO, Haowen ZHU, Tongwen XU. Network modal innovation for distributed machine learning [J]. Telecommunications Science, 2023, 39(6): 44-51. |
[2] | Shanshan LI, Jianhong XU, Tao LI, Yongjian ZHAO, Zhifei LIU. Research on digital twin network capability maturity model of telecom operators [J]. Telecommunications Science, 2023, 39(6): 149-158. |
[3] | Yiyin GU, Hongkui WANG, Haibin YIN. VVC coded distortion prediction model based on frame-level transform coefficient modeling of generalized Gaussian distribution [J]. Telecommunications Science, 2023, 39(4): 101-110. |
[4] | Liang XU, Ye WANG, Ran ZHENG, Jiheng ZHANG, Ping YUAN, Xinyang LI, Yu TIAN. Design and application of multi-dimensional evaluation model of telecommunication network operations and maintenance [J]. Telecommunications Science, 2023, 39(4): 142-151. |
[5] | Wen QIAO, Xiaozheng WANG, Gan REN, Aidong YANG, Shoufeng WANG, Peng WANG, Xiaozhou YE, Ye OUYANG. An eCUA model for integrated computing power and decentralized digital identity and a new business system supporting information framework [J]. Telecommunications Science, 2023, 39(4): 152-164. |
[6] | Lijuan YE, Yiting WANG, Licheng ZHU. Cellular automata model based power network attack prediction technology [J]. Telecommunications Science, 2023, 39(4): 173-179. |
[7] | Yishi HAN, Yuxin XU, Tiantian LU. A model of RD-IHSAT rumor dissemination based on coupling network [J]. Telecommunications Science, 2023, 39(2): 118-131. |
[8] | Yudi SUN. A prediction model of massive 5G network users’ revisit behavior based on telecom big data [J]. Telecommunications Science, 2023, 39(2): 157-162. |
[9] | Mingrui XU, Yucai YAO, Xiaorong ZHU. A Fisco-Bcos platform based accurate performance analysis model of blockchain system [J]. Telecommunications Science, 2023, 39(1): 79-91. |
[10] | Ming WAN. Business model stakeholders and boundary reconstruction of 5GtoB [J]. Telecommunications Science, 2022, 38(Z1): 60-66. |
[11] | Shiliang HU. Thinking and understanding of six major problems in the large-scale development of 5GtoB [J]. Telecommunications Science, 2022, 38(Z1): 67-76. |
[12] | Keqiang GUO, Feng CHENG, Zhenlong TAN. 5G empowers digital transformation of industries:scenario, pathway and business model [J]. Telecommunications Science, 2022, 38(Z1): 101-107. |
[13] | Jingbo ZHAO, Shilei DONG, Tingyu HUANG, Mengxia CHEN, Peng HUANG. Research on accurate and efficient coverage of 5G private network [J]. Telecommunications Science, 2022, 38(Z1): 108-119. |
[14] | Bin ZHUGE, Linchao WANG, Yang SONG, Yu SHAO, Ligang DONG, Xian JIANG. Routing planning and handoff based on LSTM traffic prediction [J]. Telecommunications Science, 2022, 38(8): 86-100. |
[15] | Nan FENG, Helin LIU, Quan ZHOU, Haijun YANG, Mineng FU, Daping ZHONG. Research on 5G core network service model intelligent prediction [J]. Telecommunications Science, 2022, 38(8): 111-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|